Show Navigation
All Galleries
Add to Cart Download

Cannabis

228 images Created 19 Jan 2018

Loading ()...

  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    K170614leafC016pan01.jpg
  • A SEM image of the edge of a leaf shows a calcium oxalate crystal. These crystals are found throughout the plant and are responsible for throat irritation when medical marijuana is smoked. Plants that have too many oxalate crystals are good candidates for modern THC extraction techniques. Calcium oxalate crystals in plants are called raphides. Humans have similar calcium crystals that can appear as kidney stones. These crystals help remove calcium build up in the tissues and make it undesirable for grazing animals to eat the plant. Magnification is x120 on the printed page.
    K170406z056.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-k070panA1A.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170525-B-cpdM080C.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    K170614leafC016pan02.jpg
  • Scanning Electron Micrograph (SEM) of a cross section of marijuana (Cannabis sativa) seed, showing the root and seed leaves enclosed. The field of view of this image is 4 mm in the horizontal direction.
    K170613cola-seedM057pan.jpg
  • Scanning Electron Micrograph (SEM) of a cross section of marijuana (Cannabis sativa) seed, showing the root and seed leaves enclosed. The field of view of this image is 4 mm in the horizontal direction.
    K170613cola-seedL055panB.jpg
  • SEM image of a transverse section through a cannabis (Cannabis sativa) plant root. The root at this location is 4 mm in diameter.
    K170610LM01A.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    K170614leafC016pan03.jpg
  • Scanning Electron Micrograph (SEM) of a cross section of marijuana (Cannabis sativa) seed, showing the root and seed leaves enclosed. The field of view of this image is 4 mm in the horizontal direction.
    K170613cola-seedL055pan.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image. The filed of view of this image is 3 mm wide.
    K170609bractF028panA.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image. The filed of view of this image is 3 mm wide.
    K170609bractF028panB.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. The filed of view in this image is 4 mm wide. This flower has been pollinated and is startign to develop a seed.
    K170609BractP066panB.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. The filed of view in this image is 4 mm wide. This flower has been pollinated and is startign to develop a seed.
    K170609BractP066panA.jpg
  • A scanning electron microscope image of the stem of a cannabis (Cannabis sativa) plant. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170607stemC010panB.jpg
  • A scanning electron microscope image of the stem of a cannabis (Cannabis sativa) plant. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170607stemC010pan.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The head o fthe trichome is 60 um in diameter.
    K170607stemE038A-pan.jpg
  • A scanning electron microscope image of the stem of a cannabis (Cannabis sativa) plant. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170607stemA005panB.jpg
  • A scanning electron microscope image of the stem of a cannabis (Cannabis sativa) plant. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170607stemA005pan.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-D027panA.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-F048panA.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-E038panA.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517-B027pan.jpg
  • SEM image of a transverse section through a cannabis (Cannabis sativa) plant root. This image shows a field of view of .2 mm.
    K170614rootpan2.jpg
  • SEM image of a transverse section through a cannabis (Cannabis sativa) plant root. The root at this location is 4 mm in diameter.
    K170614rootp089pan1.jpg
  • SEM image of a transverse section through a cannabis (Cannabis sativa) plant root. The image shows a field of view 3 mm wide at this location.
    K1700515seed012root-tip.jpg
  • SEM image of a transverse section through a cannabis (Cannabis sativa) plant root. The root at this location is .5 mm in diameter.
    K170614rootN072pan1.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170525-B-cpdM080B.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170525-B-cpdM080.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072B1.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072B.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072A.jpg
  • Scanning Electron Micrograph (SEM) of a grain of pollen from Cannabis sativa plant. The pollen is 20 um in diameter and is scattered by air currents.  The pollen of the cannabis plant is almost identical to the hops plant, a close relative.
    K170524CPDpollen010A.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170524CPD-B-M094panC.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These trichomes are on teh surface of the leaf. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The circular cell structure a tthe center of the frame is 40 um in diameter.
    K170524CPD-triCN101mix.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-k070panA1C.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170524CPD-B-M094panB.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170524CPD-B-M094panA.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-k070panA1B.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-H062panC.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-H062panB.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-H062panA.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517bud-F055panB.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517bud-F055panC.jpg
  • Crystals in the roots of the Cannabis plant. The exact composition of these are currently unknown and their role in the life cycle of the plant is a mystery. Why are they there? What do they do? What is the chemical composition of the crystals? Just a few of the questions that seem to be a daily occurrence when looking at the cannabis plant with this level of magnification.<br />
Magnification on the printed page is 4300x at 9 inches wide.
    K170614Root-crystalscombo.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517bud-F055panA.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-C035B.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-C035A.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517-A021panC.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517-A021panB.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517-A021panA.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170516C022layers.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: x500 when printed 10 cm wide.
    K170516protozoa-A002.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .2mm.
    K170512stemC027B.jpg
  • The male flower of the cannabis plant (Cannabis sativa) imaged by a scanning electron microscope. The field of view is 3 mm wide.
    K170515cryoZ-Maleflowerpan01.jpg
  • The male flower of the cannabis plant (Cannabis sativa) imaged with a scanning electron microscope (SEM). This image shows a field of view of 6 mm in the horizontal direction.
    K170515SEMAA011Pan1.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .2mm.
    K170512stemC027A.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: 252X when printed 10 cm wide.
    K170512bottom1C.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: 252X when printed 10 cm wide.
    K170512bottom1B.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .3mm.
    K170510stemApan1C.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: 252X when printed 10 cm wide.
    K170512bottom1.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .3mm.
    K170510stemApan1B.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .3mm.
    K170510stemApan1.jpg
  • The underside of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 8 mm.
    K170509M081full-PAN2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. Thise is a low glandular trichomes that is close to the surface of the leaf. It secretes a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 20 um in diameter.
    K170510stem058thric.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf10B.jpg
  • False color Scanning Electron Micrograph (SEM) of the new growth at the tip of the bud of a marijuana plant (Cannabis sativa). The plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    k170509cryotest-zhp-alcuK066pan.jpg
  • The underside of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 8 mm.
    K170509M081full-PAN1.jpg
  • False color Scanning Electron Micrograph (SEM) of the underside of a new marijuana leaf (Cannabis sativa). The plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170509cryotest-zhp-alcuE0.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 3 mm wide.
    K170429cryo-3-015BW.jpg
  • A scanning electron microscope image of the stem of a young cannabis (Cannabis sativa) plant. The thorn-like trichomes use a physical defense to keep insects and animals from eating the plant. The stem is 1.5 mm diameter in this image.
    K170429-5day064C.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 3 mm wide.
    K170429cryo-3-015.jpg
  • A scanning electron microscope image of the stem of a young cannabis (Cannabis sativa) plant. The thorn-like trichomes use a physical defense to keep insects and animals from eating the plant. The stem is 1.5 mm diameter in this image.
    K170429-5day064B.jpg
  • A scanning electron microscope image of the stem of a young cannabis (Cannabis sativa) plant. The thorn-like trichomes use a physical defense to keep insects and animals from eating the plant. The stem is 1.5 mm diameter in this image.
    K170429-5day064.jpg
  • A close up of the seed leaf or cotyledon of a cannabis plant. Imaged with a scanning electron microscope (SEM). The surface of the cotyledon. The cotyledon is the scientific name for the fist two leaves the plant makes. In reality, these two leaves are actually folded up inside the seed, so this structure is often called the seed leaves. It is important that the seeding gets these leaves unfolded and oriented correctly quickly to start photosynthesis and start False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 1.2 mm wide.
    K170428-4dayPD024.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170428-4dayPA003C.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170428-4dayPA003B.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170428-4dayPA003A.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 5 mm wide.
    K170428-4dayP.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 8 mm wide.
    K170428-4day016.jpg
  • Scanning Electron Micrograph (SEM) of a sample if ice water hash or hashish. Shown in the image is a pile of glandular trichomes that have been concentrated in a unique process. Leaves with very high concentrations of stalked glandular trichomes are cooled in ice water then agitated. The agitation breaks off the trichomes, which in turn sink, to the bottom of the water.  Once separated from the water and dried, the ice water hash has some of the highest concentrations of THC of any physical separation process.  Since the stalked glandular trichomes are the location of the highest concentration of THC this technique in recent years has become very popular. The marijuana (Cannabis sativa) plant contains tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells in this sample are 60 um in diameter.
    K170403hashish01.jpg
  • Light Microscope image of a transverse section through a cannabis (Cannabis sativa) plant stem. The root at this location is 6 mm in diameter.
    K17stem-near-root.jpg
  • Scanning Electron Microscope (SEM) image of the base of a marijuana (Cannabis sativa) female flower bud, showing cells called trichomes. These thorn-like trichomes are used to protect the flower bud from insect attack. The field of view of this image is 2 mm in the horizontal direction.
    K170327cannabis02.jpg
  • Scanning Electron Micrograph (SEM) of a grain of pollen from Cannabis sativa plant. The pollen is 20 um in diameter and is scattered by air currents.  The pollen of the cannabis plant is almost identical to the hops plant, a close relative.
    K17SEM-canpollen025.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 2 mm.
    K17SEM_leaf11B.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf10C.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 2 mm.
    K17SEM_leaf11A.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf10A.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf9B.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf9A.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf8A.jpg
  • The top side of a new cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 4 mm.
    K17SEM_leaf8B.jpg
  • The male flower of the cannabis plant (Cannabis sativa)
    K17maleflowermacro-optical-7.jpg
  • Germinating seeds of the hemp or marijuana plant (Cannabis sativa). Marijuana contains THC (delta 9 tetrahydrocannabinol), a psychoactive compound. The Cannabis plant is native to central Asia. It is cultivated for three products: fibre from the stems, seed oil, and for use as a drug of intoxication. This fast-growing annual plant is a common weed in northern India. The drug is produced in minute resin glands on the plant surface, including the leaves, but is most concentrated in female flowers.
    K17seed-3color2.jpg
  • Germinating seeds of the hemp or marijuana plant (Cannabis sativa). Marijuana contains THC (delta 9 tetrahydrocannabinol), a psychoactive compound. The Cannabis plant is native to central Asia. It is cultivated for three products: fibre from the stems, seed oil, and for use as a drug of intoxication. This fast-growing annual plant is a common weed in northern India. The drug is produced in minute resin glands on the plant surface, including the leaves, but is most concentrated in female flowers.
    K17seed-4page.jpg
  • The male flower of the cannabis plant (Cannabis sativa)
    K17maleflowermaleMG_7593-Edit.jpg
  • The male flower of the cannabis plant (Cannabis sativa)
    K17maleflowermaleflower1-5x.jpg
  • The male flower of the cannabis plant (Cannabis sativa)
    K17maleflowermacro-optical-9.jpg
  • The vain of a cannabis leaf imaged with a scanning electron microscope (SEM). Width of the image is 2 mm.
    K17leaf-vain01.jpg
  • The male flower of the cannabis plant (Cannabis sativa)
    K17maleflowermacro-optical-6.jpg
Next
View: 100 | All
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae