Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 422 images found }

Loading ()...

  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 17,131X magnification and the filed of view is 7 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo35A.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 6,580X magnification and the filed of view is 20 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo36B.jpg
  • Thermophilic bacteria. Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 19,000X magnification and the filed of view is 3 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles..
    K12-thermo32A.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 3,380X magnification and the filed of view is 29 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo31A.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 3,380X magnification and the filed of view is 29 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo31BW.jpg
  • Thermophilic bacteria. Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 19,000X magnification and the filed of view is 3 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles..
    K12-thermo32C.jpg
  • Thermophilic bacteria. Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 19,000X magnification and the filed of view is 3 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles..
    K12-thermo32B.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 4,580X magnification and the filed of view is 27 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo29B.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 4,580X magnification and the filed of view is 27 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo29A.jpg
  • Thermophilic bacteria (blue). Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 17,131X magnification and the filed of view is 7 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreem condions are called thermophiles or extremophiles..
    K12-thermo27B.jpg
  • Thermophilic bacteria (blue). Collected in the summer of 2012 in 90C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 19,000X magnification and the filed of view is 1.5 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles. This sample came from the hottest part of the springs.  The hotter the temperature the small smaller the bacteria typically.
    K12-thermo23A.jpg
  • Thermophilic bacteria (blue). Collected in the summer of 2012 in 90C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 19,000X magnification and the filed of view is 1.5 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles. This sample came from the hottest part of the springs.  The hotter the temperature the small smaller the bacteria typically.
    K12-thermo23BW.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 17,131X magnification and the filed of view is 7 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo35C.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 17,131X magnification and the filed of view is 7 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo35BW.jpg
  • Thermophilic bacteria (blue). Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 17,131X magnification and the filed of view is 7 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreem condions are called thermophiles or extremophiles..
    K12-thermo27A.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 6,580X magnification and the filed of view is 20 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo36A.jpg
  • Fluorescent Coral in Long Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in long wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals042.JPG
  • Precious coral or red coral (Corallium rubrum)is a species of marine coral. The distinguishing characteristic of precious coral is the durable and intensely colored red or pink skeleton, which is used for making jewelry.  Red corals grow on rocky seabottoms in dark environments—either in the depths or in dark caverns or crevices. The original species, C. rubrum  formerly Gorgonia nobilis. It grows at depths from 10 to 300 meters below sea level.
    red-coral_0051.jpg
  • An image of Cycloseris erosa coral in Short wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals033.JPG
  • An image of Acanthastrea lordhowensis coral in Long wave UV Light showing orange Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals007.JPG
  • Precious coral or red coral (Corallium rubrum)is a species of marine coral. The distinguishing characteristic of precious coral is the durable and intensely colored red or pink skeleton, which is used for making jewelry.  Red corals grow on rocky seabottoms in dark environments—either in the depths or in dark caverns or crevices. The original species, C. rubrum  formerly Gorgonia nobilis. It grows at depths from 10 to 300 meters below sea level.
    red-coral_0050.jpg
  • Scanning electron microscope image of a Blue mussel (Mytilus edulis) shell.  Colored scanning electron micrograph (SEM). The shell of a mollusc is a tough exoskeleton formed from calcium carbonate (aragonite or calcite). It evolved as a protective barrier to predators. Magnification: 3,740x and the image is 30 um wide.
    K12sem-bluemusselA.jpg
  • Fluorescent Coral in Short Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in short wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals043.JPG
  • An image of Pectinia species coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals012.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals010.JPG
  • An image of Acanthastrea lordhowensis coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals008.JPG
  • An image of Favites pentagona coral in Long wave UV Light showing green and orange Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals006.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals003.JPG
  • Precious coral or red coral (Corallium rubrum)is a species of marine coral. The distinguishing characteristic of precious coral is the durable and intensely colored red or pink skeleton, which is used for making jewelry.  Red corals grow on rocky seabottoms in dark environments—either in the depths or in dark caverns or crevices. The original species, C. rubrum  formerly Gorgonia nobilis. It grows at depths from 10 to 300 meters below sea level.
    red-coral_0056.jpg
  • An image of Caulastrea Curata coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals040.JPG
  • An image of Cycloseris erosa coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals036.JPG
  • An image of Cycloseris erosa coral in white Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals037.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals030.JPG
  • An image of Stichodactyla taptum anemone in long wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals029.JPG
  • Fluorescent Coral in White and UV Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals011.JPG
  • An image of Acanthastrea lordhowensis coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals009.JPG
  • An image of Favites pentagona coral in white Light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals005.JPG
  • An image of Scolymia australis coral white Light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals004.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals001.jpg
  • An image of Caulastrea Curata coral in long wave UV light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals039.JPG
  • An image of Cycloseris erosa coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals034.JPG
  • Fluorescent Coral in white light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals041.JPG
  • An image of Stichodactyla taptum anemone in white Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals031.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals024.JPG
  • An image of Pectinia species coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals002.jpg
  • An image of Cycloseris erosa coral in white Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals032.JPG
  • An image of Stichodactyla taptum anemone in unfiltered UV Light showing Fluorescence.  In this image there is a large amout of blue light that is so bright is it difficult to see the florescent tissues.  This iis what a diver would see with out the blue blocking filter.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals027.JPG
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    K170614leafC016pan03.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609bractB008PANtk.jpg
  • Tulips, colored X-ray.
    K15Xtulips-on-white202B.jpg
  • False color x-ray of Calla Lily (Zantedeschia aethiopica).
    K15XCallaLily6A.jpg
  • X-ray of Anthurium Flower. Anthurium bouquet (Anthurium andraeanum)
    K15X-Anthuriumbouquet03E.jpg
  • X-ray of Anthurium Flower. Anthurium bouquet (Anthurium andraeanum)
    K15X-Anthuriumbouquet03A.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The head o fthe trichome is 60 um in diameter.
    K170607stemE038A-pan.jpg
  • A scanning electron microscope image of the stem of a cannabis (Cannabis sativa) plant. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170607stemA005pan.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-k070panA1C.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-k070panA1A.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170614leafH046pan.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170614leafH046pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: 52X when printed 10 cm wide.
    170613gland-triF031pan3.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170613cola-bladeH043pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170613cola-bladeH043pan1.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170613cola-bladeA002pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609BractK035pan.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609bractC013pan2.jpg
  • Tulips, colored X-ray.
    K15Xgiant-tulips02C.jpg
  • False color x-ray of Calla Lily (Zantedeschia aethiopica).
    K15XCallaLily05A.jpg
  • An x-ray of Hardneck garlic scapes.  These leafless stems of the garlic plant (Allium sativum) are edible and used as a vegetable.
    K15X-garlic-comp02C.jpg
  • X-ray Cockscombs Fower Cockscombs (Celosia sp.)
    K15X-CockscombsFower01A.jpg
  • X-ray of Pacific Mistletoe (Phoradendron villosum) collected in California, USA Mistletoe is a partial parasite. It bears evergreen leaves that carry out some photosynthesis of their own, while it relies on the host plant mainly for mineral nutrients from the ground.
    K14X-mistlletoe-1C.jpg
  • Cannabis plant. Colored scanning electron micrograph (SEM) of the bottom surface of a cannabis (Cannabis sativa) plant.  Magnification is 90x when printed 10 cm wide.
    K14SEM-canna-29B.jpg
  • Cannabis plant. Colored scanning electron micrograph (SEM) of the bottom surface of a cannabis (Cannabis sativa) plant.  Magnification is 90x when printed 10 cm wide.
    K14SEM-canna-29.jpg
  • A false color SEM image of a Calcium oxalate crystal.  Even a small dose of calcium oxalate is enough to cause intense sensations of burning in the mouth and throat.  Commonly found in popular houseplants, such as Dumbcane, the crystals effects or symptoms may last for a week or more, making calcium oxalate crystals a non-desirable ingredient in medicinal cannabis.  It is surprising that calcium oxalate is rarely discussed in literature about medical marijuana (cannabis).  There crystals are fairly common in plants, as they make it hard for grazing animals to eat the plant. Image is 20 um wide.
    K13SEM-pot-oxalate01A.jpg
  • Colored-enhanced scanning electron micrograph (SEM) of a section through a xylem vessel in a cannabis stem. The xylem transports water and mineral nutrients from the roots throughout the plant. The walls of the xylem vessels are strengthened with lignin  loops, a woody substance that helps to support the plant. Magnification: x2200 when printed at 10 centimeters wide.
    K13SEM-canna67.jpg
  • False Color X-ray of a snapping turtle (Chelydra serpentina). This particular turtle is a female and is full of eggs.  This specimen was collected after it was killed by a car – look closely at the x-ray and you can see extensive shell damage as well as a number of unlaid eggs. This freshwater turtle is found in wetlands throughout North America, from southern Canada to the Gulf of Mexico. An adult can have a shell length of around 45 centimeters.  They feed on whatever they can catch in their powerful beaks, including fish, birds, mammals, amphibians and carrion.
    K14X-Snapper-Turtle01B.jpg
  • False Color X-ray of a snapping turtle (Chelydra serpentina). This particular turtle is a female and is full of eggs.  This specimen was collected after it was killed by a car – look closely at the x-ray and you can see extensive shell damage as well as a number of unlaid eggs. This freshwater turtle is found in wetlands throughout North America, from southern Canada to the Gulf of Mexico. An adult can have a shell length of around 45 centimeters.  They feed on whatever they can catch in their powerful beaks, including fish, birds, mammals, amphibians and carrion.
    K14X-Snapper-Turtle01C.jpg
  • X-ray of a freshwater drum (Aplodinotus grunniens), the only freshwater fish in the family Sciaenidae.  This is a false color x-ray.
    K14X-drum-fish01B.jpg
  • Cannabis plant. Colored scanning electron micrograph (SEM) of the surface of a cannabis (Cannabis sativa) plant.  Glandular cells called trichomes are also present. These are capitate trichomes that have stalks. These trichomes secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug.  Magnification is 180x when printed 10 cm wide.
    K13SEM-pot-multiBSE-001.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawCU-C.jpg
  • An X-Ray of a stick insect (order Phasmatodea).
    K12X-walkingstick01.jpg
  • Mosquito larva (Culicine sp.). At the end of the abdomen is a breathing siphon that ends in a spiracle. This is held out of the water to allow the larva to breathe. The mosquito's larval stage lasts for between 1 to 2 weeks. During this time the larva lives underwater, feeding on algae and detritus. Photograhed in Upstate New York in the summer..
    K12-mosuitoe401.JPG
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinthCU2.jpg
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinth01.jpg
  • Cannabis plant. Colored scanning electron micrograph (SEM) of the surface of a cannabis (Cannabis sativa) plant bud.  Glandular cells called trichomes are also present. These are capitate trichomes that have stalks. These trichomes secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug.  Magnification is 180x when printed 10 cm wide.
    K13SEM-pot-A01color-CSC.jpg
  • SEM image of a transverse section through a cannabis (Cannabis sativa) plant root. The root at this location is .5 mm in diameter.
    K170614rootN072pan1.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-D027panA.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These trichomes are on teh surface of the leaf. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The circular cell structure a tthe center of the frame is 40 um in diameter.
    K170524CPD-triCN101mix.jpg
  • A scanning electron microscope image of the football shaped bract of the female  cannabis (Cannabis sativa) flower. The oval bract structure houses the stigma and is responsible for producing seeds when the flower has been pollinated. This bract structure is also the location of the highest concentration of cannabinoid compounds on the plant.  This site is also the location of the highest concentration of THC. There are a number of different types of cell structures called trichomes in this image. The thorn-like trichomes use a physical defense while the circular glandular trichomes use chemical defense. Combined, these defenses keep insects and animals from eating the plant. Each circular glandular trichome is 50 um in diameter in this image.
    K170517bud-H062panC.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .2mm.
    K170512stemC027A.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .3mm.
    K170510stemApan1.jpg
  • False color Scanning Electron Micrograph (SEM) of the underside of a new marijuana leaf (Cannabis sativa). The plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170509cryotest-zhp-alcuE0.jpg
  • A scanning electron microscope image of the stem of a young cannabis (Cannabis sativa) plant. The thorn-like trichomes use a physical defense to keep insects and animals from eating the plant. The stem is 1.5 mm diameter in this image.
    K170429-5day064C.jpg
  • A scanning electron microscope image of the stem of a young cannabis (Cannabis sativa) plant. The thorn-like trichomes use a physical defense to keep insects and animals from eating the plant. The stem is 1.5 mm diameter in this image.
    K170429-5day064B.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: 52X when printed 10 cm wide.
    170613cola-bladeC015pan1.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609bractC013pan1.jpg
  • Tulips, colored X-ray.
    K15Xtulips-on-black02.jpg
  • Tulips, colored X-ray.
    K15Xgiant-tulips02A.jpg
  • False color X-ray of Hellebore (Helleborus orientalis) flowers.
    K15x-Hellebore-singleART01B.jpg
  • An x-ray of Hardneck garlic scapes.  These leafless stems of the garlic plant (Allium sativum) are edible and used as a vegetable.
    K15X-garlic-comp01E.jpg
  • X-ray of Eucalyptus cinerea 'Pendula' branch.
    K15X-eucalyptus003B.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae