Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 123 images found }

Loading ()...

  • An unidentified section of fossilized (agatized) dinosaur bone. The cavities in the bone have filled with quartz. Specimen collected in Wyoming USA. 5x macro lens.
    Kinsman-dino-bone.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x50 when printed 10 cm wide.
    K14SEM-humanbone039.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x50 when printed 10 cm wide.
    K14SEM-humanbone046-2B.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x40 when printed 10 cm wide.
    K14SEM-humanbone041B.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x50 when printed 10 cm wide.
    K14SEM-humanbone039B.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x40 when printed 10 cm wide.
    K14SEM-humanbone034B.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x40 when printed 10 cm wide.
    K14SEM-humanbone034.jpg
  • Dried Human bone photographed at 5x magnification.  This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.
    K13-bonestack001.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x50 when printed 10 cm wide.
    K14SEM-humanbone046-2.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x1000 when printed 10 cm wide.
    K14SEM-humanbone043B.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x300 when printed 10 cm wide.
    K14SEM-humanbone038B.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x1000 when printed 10 cm wide.
    K14SEM-humanbone043.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x40 when printed 10 cm wide.
    K14SEM-humanbone041.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x300 when printed 10 cm wide.
    K14SEM-humanbone038.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x40 when printed 10 cm wide.
    K14SEM-humanbone035.jpg
  • SEM of Human bone. This image shows the cancellous (spongy) bone of the human shin. Bone tissue is either compact or cancellous. Compact bone usually makes up the exterior of the bone, while cancellous bone is found in the interior. Cancellous bone is characterised by a honeycomb arrangement of trabeculae. These structures help to provide support and strength. The spaces within this tissue normally contain bone marrow, a blood forming substance.  Magnification is x40 when printed 10 cm wide.
    K14SEM-humanbone035B.jpg
  • Scanning electron microscope (SEM) of human bone tissue. Colored scanning electron micrograph  of cancellous (spongy) bone. Cancellous bone is found in the interior of bones. Cancellous bone is characterized by a honeycomb arrangement, comprising a network of trabeculae (rod-shaped tissue). These structures provide support and strength to the bone. The spaces within this tissue contain bone marrow (not seen), a blood forming substance. This image is x150 when printed 10 cm wide.
    K13bone-c200A.jpg
  • X-ray of an eastern cottontail rabbit (Sylvilagus floridanus) sustaining numerous broken bones after being bit by a cat.  This is a youg rabbit.
    K12X-rabbit001B.jpg
  • X-ray of an eastern cottontail rabbit (Sylvilagus floridanus) sustaining numerous broken bones after being bit by a cat.  This is a youg rabbit.
    K12X-rabbit001A.jpg
  • Enhanced X-ray of a fractured tibia in a ski boot.
    K11-xskibootbones1.jpg
  • Enhanced X-ray of a fractured tibia in a ski boot.
    K11-xskibootbones2.jpg
  • A  view of a human vertebra
    K13-huvert-blue073.JPG
  • A  view of a human vertebra
    K13-Humanvert-002.JPG
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra06B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra02B.jpg
  • A  view of a human vertebra
    K13-huvert-blue066.JPG
  • A  view of a human vertebra
    K13-Humanvert-004.JPG
  • An x-ray of a human lumbar vertebra. T5
    K15X-humanvert-Comp01A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15Xhumanvert-Comp03B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra02A.jpg
  • A  view of a human vertebra
    K13-Humanvert-005.JPG
  • A  view of a human vertebra
    K13-Humanvert-001.JPG
  • An x-ray of a human lumbar vertebra. T5
    K15Xhumanvert-Comp03C.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15Xhumanvert-Comp03.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra06A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-humanvert-Comp02B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-humanvert-Comp02A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-humanvert-Comp01C.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-humanvert-Comp01B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra010A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra09A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra04A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra01A.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra010B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra09B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra04B.jpg
  • An x-ray of a human lumbar vertebra. T5
    K15X-human-vertebra01B.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawCU-C.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawC.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawA.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawCU-A.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawB.jpg
  • An X-ray of the jaws of a mako shark (Isurus oxyrinchus).
    K12X-makosharkjawCU-B.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine911.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine910.JPG
  • Skull of a River Otter, (Lontra canadensis).
    otter-skull_0100.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine907.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine845.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine841.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine840.JPG
  • Skull of a River Otter, (Lontra canadensis).
    otter-skull_0092.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine854.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine853.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine852.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine850.JPG
  • Skull of a River Otter, (Lontra canadensis).
    otter-skull_0094.jpg
  • X-ray of a wild boar skull  (Sus scrofa). These animals are an invasive species and besides displacing native plants and animals, they are quite dangerous to humans.  False color X-ray
    K14X-wild-pig-topview01.jpg
  • X-ray of a wild boar skull  (Sus scrofa). These animals are an invasive species and besides displacing native plants and animals, they are quite dangerous to humans.  False color X-ray
    K14X-wild-pig-side01C.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine913.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine912.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine909.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine908.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine848.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine846.JPG
  • X-ray of a human foot.
    K09Xankle16.jpg
  • Skull of a River Otter, (Lontra canadensis).
    otter-skull_0091.jpg
  • X-ray of a wild boar skull  (Sus scrofa). These animals are an invasive species and besides displacing native plants and animals, they are quite dangerous to humans.  False color X-ray
    K14X-wild-pig-topview01B.jpg
  • X-ray of a wild boar skull  (Sus scrofa). These animals are an invasive species and besides displacing native plants and animals, they are quite dangerous to humans.  False color X-ray
    K14X-wild-pig-side01B.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine851.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine844.JPG
  • X-ray of a wild boar skull  (Sus scrofa). These animals are an invasive species and besides displacing native plants and animals, they are quite dangerous to humans.  False color X-ray
    K14X-wild-pig-side01.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine847.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine843.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine842.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine839.JPG
  • Frontal x-ray of the knee with fixation devices, evidence of a prior anterior cruciate ligament (ACL) repair.
    K09xknee55.jpg
  • An xray of the head of a Turkey vulture (Cathartes aura).
    K08Xturkeyvulturehead1.jpg
  • An xray of the head of a Turkey vulture (Cathartes aura).
    K08Xturkeyvulturehead1B.jpg
  • X-ray of an Atlantic Mackerel (Scomber scombrus). Fresh fish, such as mackerel, is an excellent source of protein and oils. This fish is easy to catch off a dock, and is very popular with fishermen.
    K11X-mackeralHDR1.jpg
  • The Skull of an American crow (Corvus brachyrhynchos) is a large passerine bird species of the family Corvidae. It is a common bird found throughout much of North America. In the interior of the continent south of the Arctic, it is referred to as simply the "crow".  American crows are common, widespread and adaptable, but they are highly susceptible to the West Nile virus. They are monitored as a bioindicator. Direct transmission of the virus from American crows to humans is not recorded to date, and not considered likely.
    crow-skull_0116.jpg
  • Kodiak bear skull (Ursus arctos middendorffi)
    K08Kodiakskull1977.jpg
  • X-Ray of Kodiak bear skull (Ursus arctos middendorffi)
    K08kodiak-top-viewblu.jpg
  • Color-enhanced Scanning Electron Microscope image (SEM) of a human lymphocyte cell.  Magnification: is x6200 when printed 10 cm wide.
    K14SEM-lymphocyte-Z027B.jpg
  • The Skull of an American crow (Corvus brachyrhynchos) is a large passerine bird species of the family Corvidae. It is a common bird found throughout much of North America. In the interior of the continent south of the Arctic, it is referred to as simply the "crow".  American crows are common, widespread and adaptable, but they are highly susceptible to the West Nile virus. They are monitored as a bioindicator. Direct transmission of the virus from American crows to humans is not recorded to date, and not considered likely.
    crow-skull_0103.jpg
  • X-Ray of Kodiak bear skull (Ursus arctos middendorffi)
    K08Kodiak-openjaw-ABlu.jpg
  • The Skull of an American crow (Corvus brachyrhynchos) is a large passerine bird species of the family Corvidae. It is a common bird found throughout much of North America. In the interior of the continent south of the Arctic, it is referred to as simply the "crow".  American crows are common, widespread and adaptable, but they are highly susceptible to the West Nile virus. They are monitored as a bioindicator. Direct transmission of the virus from American crows to humans is not recorded to date, and not considered likely.
    crow-skull_0119.jpg
  • Color-enhanced Scanning Electron Microscope image (SEM) of a human lymphocyte cell.  Magnification: is x6200 when printed 10 cm wide.
    K14SEM-lymphocyte-Z027.jpg
  • Kodiak bear skull (Ursus arctos middendorffi) shown with a coyote skull (Canis latrans) for scale.
    K08Kodiakskullcoyot1983.jpg
  • Kodiak bear skull (Ursus arctos middendorffi)
    K08Kodiakskull1879.jpg
  • The Skull of an American crow (Corvus brachyrhynchos) is a large passerine bird species of the family Corvidae. It is a common bird found throughout much of North America. In the interior of the continent south of the Arctic, it is referred to as simply the "crow".  American crows are common, widespread and adaptable, but they are highly susceptible to the West Nile virus. They are monitored as a bioindicator. Direct transmission of the virus from American crows to humans is not recorded to date, and not considered likely.
    crow-skull_0104.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae