Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 15 images found }

Loading ()...

  • A hand held calculator is x-rayed to show the placement of keyboard, electronics, and circuits.  This calculator does not have any batteries in it, but the internal battery is clearly visible as a circular spot about the size of a quarter near the bottom.
    calculator.jpg
  • An X-Ray of a computer Hard drive.
    harddrive1FC.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4400.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0046.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0030X.jpg
  • A .357 caliber bullet is fired from a hand gun.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-357magt4426.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0028.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0015.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0046X.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0015.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0046X.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4398blue.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0028.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0030A.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4398.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae