Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 985 images found }

Loading ()...

  • Visitors observe the colorful red bacterial mat around perimeter of Grand Prismatic Spring, Midway Geyser Basin, Yellowstone National Park, Wyoming. Noted as the largest hot spring in the U.S. and third largest in the world.
    K12-yellowstone-pan002.jpg
  • Visitors observe the colorful red bacterial mat around perimeter of Grand Prismatic Spring, Midway Geyser Basin, Yellowstone National Park, Wyoming. Noted as the largest hot spring in the U.S. and third largest in the world.
    K12-yellowstone033.JPG
  • Visitors observe the colorful red bacterial mat around perimeter of Grand Prismatic Spring, Midway Geyser Basin, Yellowstone National Park, Wyoming. Noted as the largest hot spring in the U.S. and third largest in the world.
    K12-yellowstone-pan-prismatic001.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 2 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMBluebirdfeathres2-3B.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 500 um wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath10blu2.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5B.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4005.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 500 um wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath10blu2.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5B.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4001.jpg
  • This picture is made from two pictures taken at different seasons.  The same scene can look quite different as the seasons change.
    K09seasonsellisonhillpan2.jpg
  • This picture is made from two pictures taken at different seasons.  The same scene can look quite different as the seasons change.
    K09seasonsellisonbridge123.jpg
  • This picture is made from two pictures taken at different seasons.  The same scene can look quite different as the seasons change.
    K09seasonsellisonbridgesouth123.jpg
  • A monarch caterpillar feeding on milkweed on the shore of Georgian Bay, Ontario, Canada
    K09monarchcat3479.jpg
  • An X-Ray of a Yellow Jack (Caranx bartholomaei), a predatory species found in the Western Atlantic and Caribbean Sea.
    K15X-yellowjack18A.jpg
  • An X-Ray of a Yellow Jack (Caranx bartholomaei), a predatory species found in the Western Atlantic and Caribbean Sea.
    K15X-yellowjack18B.jpg
  • The sunset moth or the urania moth species (Urania ripheus) is an iridescent moth that is active during the day . This migratory insect lives in tropical rainforests in Madagascar. The 8 cm wide wings are iridescent and reflect red, yellow, and green.
    urania-r_00036.jpg
  • Fluorescent Coral in Long Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in long wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals042.JPG
  • An image of Cycloseris erosa coral in Short wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals033.JPG
  • An image of Pectinia species coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals012.JPG
  • An image of Acanthastrea lordhowensis coral in Long wave UV Light showing orange Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals007.JPG
  • Willemite photographed in lwhite light.  Calcite, willemite and franklinite (black) from New Jersey.  Part of a series of the specimen in different lights.
    K12-willemite3993.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8715.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8709.jpg
  • An X-ray of a Purple sea urchin.
    sea-Urchinblue.jpg
  • Sacred lotus flower. This lotus (Nelumbo nucifera) is a member of the water lily family, but is unusual in producing leaves which are held above the water. The flower lasts for only one day, and the seeds may germinate after remaining dormant for many years. The plant is regarded as sacred in India and China because Buddha is supposed to have been born in the heart of a lotus.
    plotus2_00008.jpg
  • Fluorescent Coral in Short Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in short wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals043.JPG
  • An image of Cycloseris erosa coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals036.JPG
  • An image of Acanthastrea lordhowensis coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals008.JPG
  • An image of Favites pentagona coral in Long wave UV Light showing green and orange Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals006.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals001.jpg
  • willemite photographed in short wave uv light.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3998.jpg
  • Two different lights combind into one image.  The left part is UV light, while the right part is white light.  A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside87combo.jpg
  • “Yooperlite” is the common name for syenite rich in fluorescent sodalite. These specimens of fluorescent sodalite were recently discovered Michigan.<br />
The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-UVIVF_5667.jpg
  • An image of Caulastrea Curata coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals040.JPG
  • An image of Cycloseris erosa coral in white Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals037.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals030.JPG
  • An image of Stichodactyla taptum anemone in long wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals029.JPG
  • Fluorescent Coral in White and UV Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals011.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals010.JPG
  • An image of Acanthastrea lordhowensis coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals009.JPG
  • An image of Favites pentagona coral in white Light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals005.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals003.JPG
  • willemite photographed in short wave uv light on the laft and white light on teh right - the two images are digitaly combined.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3998combo.jpg
  • Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVroc8696.jpg
  • Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVroc3983.JPG
  • Calcite , willemite  and franklinite  from New Jersey, photographed in visible light.  Part of a series of the specimen in different lights.
    K12-UVroc3981.JPG
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8716.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3991.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite (green) and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3988.jpg
  • Male Northern Cardinal (Cardinalis cardinalis) in flight.
    K07HSbird-card2.jpg
  • An image of Caulastrea Curata coral in long wave UV light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals039.JPG
  • An image of Cycloseris erosa coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals034.JPG
  • An image of Scolymia australis coral white Light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals004.JPG
  • willemite photographed in long wave uv light.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under long-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3996.jpg
  • Hackmanite is an important variety of sodalite exhibiting Florescence.  This specimen hackmanite is from Ontario Canada.  Photographed under white light.  Part of a series of the specimen in different lights.
    K12-UVHackmanite8703.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8712.jpg
  • “Yooperlite” is the common name for syenite rich in fluorescent sodalite. These specimens of fluorescent sodalite were recently discovered Michigan. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_5669.jpg
  • An image of Cycloseris erosa coral in white Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals032.JPG
  • An image of Stichodactyla taptum anemone in unfiltered UV Light showing Fluorescence.  In this image there is a large amout of blue light that is so bright is it difficult to see the florescent tissues.  This iis what a diver would see with out the blue blocking filter.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals027.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals024.JPG
  • Calcite , willemite  and franklinite (black) from New Jersey, photographed under white light.  Part of a series of the specimen in different lights.
    K12-UVroc8694.jpg
  • Hackmanite is an important variety of sodalite exhibiting Florescence.  This specimen hackmanite is from Ontario Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVHackmanite8707.jpg
  • Fluorescent Coral in white light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals041.JPG
  • An image of Stichodactyla taptum anemone in white Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals031.JPG
  • An image of Pectinia species coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals002.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3409.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3410.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3485.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3400.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-film-3153.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170516C022layers.jpg
  • False color Scanning Electron Micrograph (SEM) of the underside of a new marijuana leaf (Cannabis sativa). The plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170509cryotest-zhp-alcuE0.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170428-4dayPA003A.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170428-4dayPA003B.jpg
  • A false color x-ray of teh cattail plant ((Typha latifolia).
    K15Xcattail01B.jpg
  • False color X-ray of Hellebore (Helleborus orientalis) flowers.
    K15x-Hellebore-singleART01B.jpg
  • X-ray of an energy efficient light bulb. This buld uses Light emmitting diode (LED) technology. THis is a false color x-ray.
    K14X-LED-bulb01C.jpg
  • X-ray of an energy efficient light bulb. This buld uses Light emmitting diode (LED) technology. THis is a false color x-ray.
    K14X-LED-bulb01.jpg
  • A false color x-ray of the leaf of a Giant Amazon water lilies (Victoria amazonica)
    K14X-amazon-lily01B.jpg
  • This is false color scanning electron microscope (SEM) image of a Martian meteorite.  This is a fragment of NWA 1068 Martian Meteorite that fell in Northwest Africa.  This specimen is from the Hupe Planetary collection.  This is an example of a Picritic Shergottit.  Magnification is x300 when printed 10 cm wide.
    K14semmars0047.jpg
  • A false color scanning electron microscope (SEM) image of Magic mushroom spores. (Psilocybe cubensis )These spores will grow into the fungus that is Psilocybe cubensis , or the magic mushroom.   When ingested, this fungus causes euphoria, hallucinations and altered perception of time. Each spore of this strain is approximately 8 by 11 um.  Magnification is x660 when printed 10 cm wide.
    K14SEM-cubensis-spores900BLUE.jpg
  • A false color scanning electron microscope (SEM) image of Magic mushroom spores. (Psilocybe cubensis )These spores will grow into the fungus that is Psilocybe cubensis , or the magic mushroom.   When ingested, this fungus causes euphoria, hallucinations and altered perception of time. Each spore of this strain is approximately 8 by 11 um.  Magnification is x660 when printed 10 cm wide.
    K14SEM-cubensis-spores900.jpg
  • False color Scanning Electron Micrograph (SEM) of the new growth at the tip of the bud of a marijuana plant (Cannabis sativa). The plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    k170509cryotest-zhp-alcuK066pan.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 3 mm wide.
    K170429cryo-3-015BW.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 5 mm wide.
    K170428-4dayP.jpg
  • A cannabis seedling showing the first set of true leaves. Imaged with a scanning electron microscope (SEM). False color has been applied. The marijuana plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 8 mm wide.
    K170428-4day016.jpg
  • A false color x-ray of teh cattail plant ((Typha latifolia).
    K15Xcattail01FX.jpg
  • False color X-ray of Hellebore (Helleborus orientalis) flowers.
    K15x-Hellebore03B.jpg
  • A false color x-ray of the leaf of a Giant Amazon water lilies (Victoria amazonica)
    K14X-amazon-lily01BW.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of light that constructively interfere to create bright greens and blues. Magnification: x1000 when printed at 10 cm wide.
    K14SEMabalone0039.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of light that constructively interfere to create bright greens and blues. Magnification: x8000 when printed at 10 cm wide.
    K14SEM140611abalone_0054B.jpg
  • A false color scanning electron microscope (SEM) image of Magic mushroom spores. (Psilocybe cubensis )These spores will grow into the fungus that is Psilocybe cubensis , or the magic mushroom.   When ingested, this fungus causes euphoria, hallucinations and altered perception of time. Each spore of this strain is approximately 8 by 11 um.  Magnification is x1400 when printed 10 cm wide.
    K14SEM-cubensis-spores1840BLUE.jpg
  • False color X-Ray of Pasta.
    K12X-pasta01B.jpg
  • SEM of Reindeer Lichen (Cladonia rangiferina); color enhanced scanning electron micrograph (SEM). A lichen is a symbiosis between a fungus and an alga. The fungus provides the structural support for the lichen partnership, while the alga provides food by photosynthesis.  Cladonia lichen are classified as fruticose due to their tall erect structures.  Like all lichens, the ones in this photograph grow very slowly: only a few millimeters in a year.  The calibration bar is 100 um and the magnification was .52 x
    K08SEMliken-A020.jpg
  • SEM of Reindeer Lichen (Cladonia rangiferina); color enhanced scanning electron micrograph (SEM). A lichen is a symbiosis between a fungus and an alga. The fungus provides the structural support for the lichen partnership, while the alga provides food by photosynthesis.  Cladonia lichen are classified as fruticose due to their tall erect structures.  Like all lichens, the ones in this photograph grow very slowly: only a few millimeters in a year.  The calibration bar is 100 um and the magnification was .52 x
    K08SEMliken-A019.jpg
  • SEM of Reindeer Lichen (Cladonia rangiferina); color enhanced scanning electron micrograph (SEM). A lichen is a symbiosis between a fungus and an alga. The fungus provides the structural support for the lichen partnership, while the alga provides food by photosynthesis.  Cladonia lichen are classified as fruticose due to their tall erect structures.  Like all lichens, the ones in this photograph grow very slowly: only a few millimeters in a year.  The calibration bar is 100 um and the magnification was .52 x
    K08SEMliken-A020.jpg
  • False color scanning electron microscope image of an uncut natural diamond.  Diamond is one of the crystal forms of pure carbon and is element 6 on the periodic table. Diamond is the hardest material known to science.  The magnification is 200x and the calibration bar is 200 um in length.
    K07SEM-diamondB2B.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae