Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 107 images found }

Loading ()...

  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine. .
    K12-combustion8008.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine. .
    K12-combustion7955.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine.  This image is part of a sequence showing the chamber before and after ignition..
    K12-combustion8014.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine.  This image is part of a sequence showing the chamber before and after ignition..
    K12-combustion8020.jpg
  • A special compression driver speaker is mounted to the left of the glass.  When the speaker is set to the resonance of the glass - vibrations will constructively interfere with each other until the glass breaks.  This demonstration takes a special speaker, a frequency generator, and an amplifier that can drive the speaker at 120 watts.  The action is captured with a high speed flash operating at 1/20,000th of a second. This image is one out of a set of two showing before and during the glass shattering..
    K12HS-glass-break008-cleaned.jpg
  • A demonstration electric motor.  This motor works on the principles of electromagnetism. Electric current running through the coil a magnetic field that opposes the bar magnets and causes the central shaft to rotate.  This converts electrical energy into rotary mechanical motion. .
    K11-motor4179.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8263.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207blue.jpg
  • .This is a demonstration of a ball rolling down an incline and making the loop-the-loop path.  The velocity required to make the loop is called the critical velocity.   The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-loop8115red.jpg
  • .This is a demonstration of a ball rolling down an incline. The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-lAccel8115blue.jpg
  • Glass of water with a sample of pumice floating.  This demonstration shows that the density of pumice is less than the density of water.
    pumice-floating_0088.jpg
  • This is a demonstration of a ball rolling down an incline, slowing down, and then speeding back to where it started.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8298.jpg
  • .This is a demonstration of a ball rolling down an incline and almost making the loop-the-loop path.  The ball does not have enough velocity to make the loop.  The velocity required to make the loop is called the critical velocity, and this show a situation where the ball leaves the surface of the track, or the normal force from the track on the ball is zero.  The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a sub critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-looploop8096white.jpg
  • .This is a demonstration of a ball rolling down an incline and making the loop-the-loop path.  The velocity required to make the loop is called the critical velocity.   The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-loop8115white.jpg
  • .This is a demonstration of a ball rolling down an incline. The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-lAccel8115red.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207.jpg
  • .This is a demonstration of a ball rolling down an incline and almost making the loop-the-loop path.  The ball does not have enough velocity to make the loop.  The velocity required to make the loop is called the critical velocity, and this show a situation where the ball leaves the surface of the track, or the normal force from the track on the ball is zero.  The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a sub critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-looploop8096.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207red.jpg
  • A young girl demonstrates her paper mache volcano reacting with vinegar and baking soda. This is an acid - base neutralization reaction which produces water and a salt as reactants.
    K10volcano002.JPG
  • Barium chloride (BaCl2) emits a red-orange glow in a flame test.  In this experiment the barium chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the barium to show the characteristic orange flame.
    K13-barium029.JPG
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-45.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-36.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-16.jpg
  • A medical bandage is pulled apart so that the adhesive can show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowbandage0224.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0179.jpg
  • Copper(II) chloride (CuCl2) emits a green-blue glow in a flame test.  In this experiment the copper chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the copper to show the characteristic green flame.
    K13-copper011.JPG
  • A feather is dropped.  The motion is recorded with a strobe light that flashes 30 times a second (30 Hz).  The falling feather quickly is slows by air friction and reaches its terminal velocity.
    k13-best-feather-drop.jpg
  • Ice water is placed in a beaker and the air is removed in a vacuum chamber.  Then the air pressure is lower that the waters vapor pressure the liquid will boil.
    K12vac-boil-icewater004.JPG
  • The vacuum chamber setup to boil ice water in a vacuum.  Ice water is placed in a beaker and the air is removed in a vacuum chamber.  Then the air pressure is lower that the waters vapor pressure the liquid will boil.
    K12vac-boil-icewater001.JPG
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration079.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration072.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration075.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration074.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration062.jpg
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell006.JPG
  • The strong electric fields created by the tesla coil cause the gas in a neon emission tube to glow.
    K10teslane3833.jpg
  • An early (1900's) electron demostration tube.  High voltage is applied to the top and bottom contacts.  This type of tube lead to the development of X-rays.  This tube is photographed with x-rays.
    crooks-neg.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0205.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-44.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-18.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-29.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-15.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-9.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0183.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0182.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0218.jpg
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow005.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow001.JPG
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration076.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration067.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration065.jpg
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell005.JPG
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare03.jpg
  • Crookes tube. Invented by William Crookes (1832 - 1919) in the late 19th century.  This apparatus was used to investigate the path taken by electrons or cathode rays as they were called then.   In this experiment the electrons are emitted from a central disc towards the glass.  As the electrons collide with the glass they fluoresce.   The metal star pattern blocks the electrons causing a shadow on the glass.  Crookes showed from the resulting shadow that electrons travel in straight lines.  The overall glow of the apparatus is caused by the excitation of the remaining gas molecules in the tube.
    K08crookes0372.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-46.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-42.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-2.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-3.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16bullet-sugarcubes0202.jpg
  • Tape is pulled from a glass surface to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0215.jpg
  • Iron fillings showing the magnetic field of two ring magnets. The magnetic field induces magnetism in each of the filings, which then line up in the field. Although the field is actually continuous, interactions between the filings cause them to accumulate in thin arcing lines.This image is part of a seris.
    magnetic-iron-fields_0129.jpg
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow007.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow006.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow002.JPG
  • Ice water is placed in a beaker and the air is removed in a vacuum chamber.  Then the air pressure is lower that the waters vapor pressure the liquid will boil.
    K12vac-boil-icewater002.JPG
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration078.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration071.jpg
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell009.JPG
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare002.jpg
  • A voltaic pile battery is used to light an LED.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-4110.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-39.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-37.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-34.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-30.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-17.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-14.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-5.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-1.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0180.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16pellet-sugarcubes0201B.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0175.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver0174.jpg
  • A feather is dropped.  The motion is recorded with a strobe light that flashes 30 times a second (30 Hz).  The falling feather quickly is slows by air friction and reaches its terminal velocity.
    K13-best-feather04.jpg
  • A balloon is placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the balloon to expand.  The trapped air expands to many the original volume and the balloon grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-pink-balloon002.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow008.JPG
  • A balloon is placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the balloon to expand.  The trapped air expands to many the original volume and the balloon grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-pink-balloon001.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow004.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow003.JPG
  • A simulation of gravity showing curved space-time.  The ball represents the sun and is resting on a sheet of plastic that stretches under its weight.  The curved sheet of plastic is a way to visualize the way a gravity curves space.
    K11-gravitywell003.JPG
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare001.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-47.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-35.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-11.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0176.jpg
  • A candy is hit with a hammer to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver-0194.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0204.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0206.jpg
  • Copper(II) chloride (CuCl2) emits a green-blue glow in a flame test.  In this experiment the copper chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the copper to show the characteristic green flame.
    K13-copper019.JPG
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration068.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration064.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae