Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 49 images found }

Loading ()...

  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03067.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03236.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02802.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02768.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03198.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03098.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02780.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03088.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03076.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02832.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02816.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02792.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02776.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02868.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02770.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02795.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02808.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03268.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0449.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0427.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0319.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips001.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips003.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips008.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips017.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips014.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips007.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips005.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips002.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips013.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips016.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips011.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips012.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips010.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips009.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips004.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips018.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips015.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips006.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-20cm_0208.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 45 degrees to the horizontal.
    bloodsplatter-20cm-45deg_0202.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 75 degrees to the horizontal.
    bloodsplatter-20cm-75deg_0199.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-21cm_0188.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-21cm_0186.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 45 degrees to the horizontal.
    bloodsplatter-20cm-45deg_0201.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-100cm_0196.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-20cm_0193.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell differnent heights.  The height of the drops on the bottom row were 5 cm, second row from the bottom is 15 cm, third row from the bottom is 20, the top row is 30 cm.  There drops all fell onto a flat paper surface.
    bloodsplatter-20cm-calibration_0216.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 80 degrees to the horizontal.
    bloodsplatter-20cm-80deg_0204.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae