Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 18 images found }

Loading ()...

  • The electrostatic field lines around a point charge and a cylinder.   The electric fields are shown by placing the two charged objects in a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right ring has a potential of + 30,000 volts.  This image is part of a series showing different charging conditions.  Of special importance is the lack of fields showing inside the cylinder.  This is the classic case of no electrical fields inside an electrical conductor.  In this image the cylinder acts as a Faraday cage and shields the enclosed area from any external electrical fields..
    K11-efield012.JPG
  • The electrostatic field lines around a point charge and a cylinder.   The electric fields are shown by placing the two charged objects in a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right ring has a potential of + 30,000 volts.  This image is part of a series showing different charging conditions.  Of special importance is the lack of fields showing inside the cylinder.  This is the classic case of no electrical fields inside an electrical conductor.  In this image the cylinder acts as a Faraday cage and shields the enclosed area from any external electrical fields..
    K11-efield010.JPG
  • The electrostatic field lines around  a point charge and a plate.The electric field is shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right plate has a potential of + 30,000 volts.   This image is part of a series showing different charging conditions.
    K11-efield006A.jpg
  • The electrostatic field lines around  a point charge and a plate.The electric field is shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right plate has a potential of + 30,000 volts.   This image is part of a series showing different charging conditions.
    K11-efield006.JPG
  • The electrostatic field lines around two parallel plates are shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left and right plates have idential gharge of +30,000 volts. This image is part of a series showing different charging conditions.
    K11-efield003C.jpg
  • The electrostatic field lines around two parallel plates are shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left plate is charged to -30,000 volts while the right plate has a potential of + 30,000 volts.  This image is part of a series showing different charging conditions.
    K11-efield001B.jpg
  • The electrostatic field lines around two parallel plates are shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left and right plates have idential gharge of +30,000 volts. This image is part of a series showing different charging conditions.
    K11-efield003A.jpg
  • The strong electric fields created by the tesla coil cause the gas in a neon emission tube to glow.
    K10teslane3833.jpg
  • An electrophotography discharge image of a ginko leaf (Ginkgo biloba ).  Also called Kirlian Photography, this technique shows the electrical discharge around an object. The principle of electrography is based on the corona discharge phenomenon that takes place when an electrically grounded object generates an electrical field, discharging sparks between itself and an electrode.
    K08ginko-a.jpg
  • A demonstration electric motor.  This motor works on the principles of electromagnetism. Electric current running through the coil a magnetic field that opposes the bar magnets and causes the central shaft to rotate.  This converts electrical energy into rotary mechanical motion. .
    K11-motor4179.jpg
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere002.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere008.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere007.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere006.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere005.JPG
  • An electrophotography discharge image of an U.S. half dollar coin. Also called Kirlian Photography, this technique shows the electrical discharge around a metal object. The principle of electrography is based on the corona discharge phenomenon that takes place when an electrically grounded object generates an electrical field, discharging sparks between itself and an electrode.
    half-dollar_00001.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7111.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7101.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae