Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 674 images found }

Loading ()...

  • Crookes tube. Invented by William Crookes (1832 - 1919) in the late 19th century.  This apparatus was used to investigate the path taken by electrons or cathode rays as they were called then.   In this experiment the electrons are emitted from a central disc towards the glass.  As the electrons collide with the glass they fluoresce.   The metal star pattern blocks the electrons causing a shadow on the glass.  Crookes showed from the resulting shadow that electrons travel in straight lines.  The overall glow of the apparatus is caused by the excitation of the remaining gas molecules in the tube.
    K08crookes0372.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42505A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5002.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5001.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks003.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42504A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5001.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks607C.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks001A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks003.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks002A.jpg
  • An X-Ray of a Photomultiplier tube.  A photomultiplier tube is used to detect very small light levels by converting photons into electrons then in turn multipling the number of electrons until the signal can be detected with convential electronics.
    x07-photomultiplier-tubeneg.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks607C.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks004.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks010A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks002A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42505A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks008A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks004.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5002.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks008A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks010A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks608E.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42503A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks608E.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42503A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42502A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks606B.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42502A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks606B.jpg
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere002.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere008.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere007.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere006.JPG
  • Girl placing her hand on a Van de Graaff electrostatic generator, a device that transmits excess electrons. Strands of the young woman's hair repel each other because they are similarly charged; the child's hairstyle displays electric field lines.
    K11-vandeMere005.JPG
  • An X-ray of a vacuum tube.  Tubes were once commonly used in electronic devices to amplify a signal.
    tube1FC.jpg
  • An X-ray of a selection of vacuum tubes.  These tubes were once commonly used in electronic devices to amplify a signal.
    tubes4FC.jpg
  • This image of an electrical discharge was made by placing a block of Lucite in the 6 megavolt (6Mv) electron beam of a linear accelerator. The Lucite gained a tremendous electrical charge when a grounded electrode was placed near it. The current flowing to ground melted the Lucite, leaving a record of the current flow. This fern-like fractal structure is quite common in electricity.
    lichtenberg_00035_RT8B.jpg
  • K18sparks002CUA.jpg
  • Multiple lightning strikes photographed over the Finger Lakes in New York.
    K08biglightning-full.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7101.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7111.jpg
  • This is an X-ray of a child's boot with electronics.  The batteries are mounded in the sole of the boot and the lights are placed along the sides.  A motion detector in the sole controls the flashing of the lights (light emitting diodes) as the child walks.  These types of boots rise many security issues when a child travels with them on an airplane.  The layout of the electronics and batteries is almost identical to a terrorist bomb placed in the sole of the boot.
    boot-eltblue.jpg
  • An X-ray of an Electronic Thermometer.  This type of electronic thermometer uses an infra-red sensor that detects the heat from a body.  The unit uses a 9 volt battery located at the bottom.  The heat sensor is at the top of this image.
    elect-thermometerFC.jpg
  • A scanning electron microscope (SEM) image of a gecko tongue..The reference bar is 30 um wide and was imaged at 176x magnification.
    K08semgecko-tongue03A.jpg
  • DVD disc surface. Colored scanning electron micrograph (SEM) of the surface of a digital video disk. The plastic disc is pressed with a series of fine depressions representing a digitized video signal capable of being read by a laser. To reflect the laser light, the plastic is coated with a fine film of metal .The calibration bar is 1 um...
    K08SEMdvd01B.jpg
  • Scanning electron microscope (SEM) of the egg (nit) of a human head louse (Pediculus humanus).   Magnified 500x.
    K07SEM-headliceeggs3.jpg
  • Scanning electron microscope image of a Blue mussel (Mytilus edulis) shell.  Colored scanning electron micrograph (SEM). The shell of a mollusc is a tough exoskeleton formed from calcium carbonate (aragonite or calcite). It evolved as a protective barrier to predators. Magnification: 3,740x and the image is 30 um wide.
    K12sem-bluemusselA.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: x500 when printed 10 cm wide.
    K170516protozoa-A002.jpg
  • Scanning electron microscope (SEM) of human bone tissue. Colored scanning electron micrograph  of cancellous (spongy) bone. Cancellous bone is found in the interior of bones. Cancellous bone is characterized by a honeycomb arrangement, comprising a network of trabeculae (rod-shaped tissue). These structures provide support and strength to the bone. The spaces within this tissue contain bone marrow (not seen), a blood forming substance. This image is x150 when printed 10 cm wide.
    K13bone-c200A.jpg
  • A scanning electron microscope image of the leaf of the lavender plant (Lavandula augustifolia ).  The branching cells give added protection from insects.  The pillow shaped structure produces the aromatic sent that gives lavender it characteristic smell.
    K07semLAV4layors.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal head parts due to the ?ant mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07sem-fruitfly4.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal size eyes ? they are smaller than normal and are due to the ?eyeless mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07sem-fruitFLY2.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 125x and represents a section of the plant 1 mm wide...
    K08SEmliverwort000B.jpg
  • Scanning electron microscope (SEM) of the egg (nit) of a human head louse (Pediculus humanus).   Magnified 145x.
    K07SEM-headliceeggs1.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal antena due to the ?ant? mutation.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly3.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 45x and represents a section of the plant 4 mm wide...
    K08SEmliverwort002B.jpg
  • SEM of a Porcupine Quill. This is a quill from a porcupine. (Erethizon dorsatum) The quill is designed to stick into the skin of a predator and not be easily removed.  This is an effective defensive mechanism for the porcupine. False color  Scanning Electron Micrograph (SEM).
    KW07SEM-porcupinecolor2.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal bar shaped eyes ? they are smaller than normal and are due to the ?bar mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-bareye2.jpg
  • Scanning electron microscope (SEM) image of the  sporangia (spore sacs)  of the "male fern".  The sporangia are borne on the undersides of the leaf fronds in brown kidney- shaped structures known as sori.   Each sporangium is a biconvex capsule in which the mature spores lie freely.   As the mature sporangium dries, the tension in the walls of the annulus causes the sporangium to rupture, expelling the spores which are then distributed by the wind. The calibration bar is 20 um and the image was collected at a magnification of 2,280x.
    K08semfern049B.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 125x and represents a section of the plant 1 mm wide...
    K08SEmliverwort000C.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal bar shaped eyes ? they are smaller than normal and are due to the ?bar mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-bareye1.jpg
  • Scanning electron microscope (SEM) image of the  sporangia (spore sacs)  of the "male fern".  The sporangia are borne on the undersides of the leaf fronds in brown kidney- shaped structures known as sori.   Each sporangium is a biconvex capsule in which the mature spores lie freely.   As the mature sporangium dries, the tension in the walls of the annulus causes the sporangium to rupture, expelling the spores which are then distributed by the wind. The calibration bar is 20 um and the image was collected at a magnification of 2,280x.
    K08semfern045b.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 45x and represents a section of the plant 4 mm wide...
    K08SEmliverwort002B.jpg
  • SEM of a fruit fly mouth. Scanning Electron Micrograph (SEM) of the head of a  fruit fly (Drosophila melanogaster).  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-mouth3.jpg
  • Cannabis plant. Colored scanning electron micrograph (SEM) of the surface of a cannabis (Cannabis sativa) plant bud.  Glandular cells called trichomes are also present. These are capitate trichomes that have stalks. These trichomes secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug.  Magnification is 180x when printed 10 cm wide.
    K13SEM-pot-A01color-CSC.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    K170614leafC016pan03.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The head o fthe trichome is 60 um in diameter.
    K170607stemE038A-pan.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072A.jpg
  • A scanning electron microscope image of the stem of a young 5-day-old cannabis (Cannabis sativa) plant stem. This image is a transverse section of the stem showing the different cell types. Cannabis is also known as help, and is a source of strong fibers for clothing, paper, and rope. This fast growing plant shows promise for being a cheep source of fibers in the future. This image shows a horizontal field of view of .3mm.
    K170510stemApan1.jpg
  • False color Scanning Electron Micrograph (SEM) of the underside of a new marijuana leaf (Cannabis sativa). The plant produces tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The filed of view in this image is 4 mm wide.
    K170509cryotest-zhp-alcuE0.jpg
  • A scanning electron microscope image of the stem of a young cannabis (Cannabis sativa) plant. The thorn-like trichomes use a physical defense to keep insects and animals from eating the plant. The stem is 1.5 mm diameter in this image.
    K170429-5day064C.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170614leafH046pan.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170614leafH046pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. Magnification: 52X when printed 10 cm wide.
    170613gland-triF031pan3.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170613cola-bladeH043pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170613cola-bladeH043pan1.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170613cola-bladeA002pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609BractK035pan.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609bractC013pan2.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of the surface of a marijuana (Cannabis sativa) plant leaf, showing glandular cells, called trichomes. These are capitate trichomes that have stalks. They secrete a resin containing tetrahydrocannabinol (THC), the active component of cannabis when used as a drug. The spherical cells at the top of the trichomes are 60 um in diameter.
    170609bractB008PANtk.jpg
  • Scanning Electron Micrograph (SEM) of pumpkin skin(Cucurbita sp.). Magnification was 100x and the field of view of this image is 2mm wide. The stalked structures are trichomes (leaf hairs) on the under side of the pumpkin leaf.
    K170918pumpkin-bottomSEM17panC.jpg
  • Scanning Electron Micrograph (SEM) of pumpkin skin(Cucurbita sp.). Magnification was 100x and the field of view of this image is 2mm wide. The stalked structures are trichomes (leaf hairs) on the under side of the pumpkin leaf.
    K170918pumpkin-bottomSEM17panb.jpg
  • Scanning electron micrograph of human brain cells. Brain cells or nerons are an extensive network of interconnecting dendrites. Cortical Neurons make up the brain's cortex (grey matter). The cerebral cortex is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain. It covers the cerebrum and cerebellum, and is divided into left and right hemispheres. The cerebral cortex plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. Magnification x1400 at 12 cm wide.
    K15sem-human-brain0050.jpg
  • Cannabis plant. Colored scanning electron micrograph (SEM) of the bottom surface of a cannabis (Cannabis sativa) plant.  Magnification is 90x when printed 10 cm wide.
    K14SEM-canna-29B.jpg
  • Skin from the Great Hammerhead Shark (Sphyrna mokarran). The Great Hammerhead Shark is the largest species of hammerhead shark, family Sphyrnidae, attaining a maximum length of 6.1 m (20 ft). It is found in tropical and warm temperate waters worldwide. This specimen was collected in Florida. This is a scanning electron microscope shot of the skin. Magnification is x142 when printed 10 cm wide.
    K14SEM-hammerhead-skin008B.jpg
  • Colored scanning electron micrograph (SEM) of clotting red blood cells from a 18 year old male's wisdom tooth tissue.  The red blood cells are starting to clot in this image.  Magnification: x1830 when printed 10cm wide.
    K14SEM140618tooth043.jpg
  • Colored scanning electron micrograph (SEM) of clotting red blood cells from a 18 year old male's wisdom tooth tissue.  The red blood cells are starting to clot in this image.  Magnification: x2330 when printed 10cm wide.
    K14SEM140618tooth013.jpg
  • Color-enhanced Scanning Electron Microscope  (SEM) of volcanic ash (volcanic glass; pumice) from Mount St. Helens in Washington State. Collected on May 18, 1980  Magnification is x450 when printed 10 cm wide.
    K14SEM-volcanic-ash026B.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of a rotten oak branch. The rot appears as filaments of mycelium, or fungus, that have grown though the wood. These filaments can clearly be seen in the circular tunnels in the wood. Magnification: x1300 when printed 10 cm wide.
    K14SEM-rottenoak081.jpg
  • Color-enhanced Scanning Electron Micrograph (SEM) of a biting midge (Ceratopogonidae sp.), more commonly known as a No See-Um.   Magnification: x165 when printed 10 cm wide.
    K14SEM-bitting-midge019.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3fullW.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3fullC.jpg
  • Color-enhanced Scanning Electron Microscope (SEM) image of human tooth dentine (fracture surface) showing a crack in the surface. 70% of dentin consists of the mineral hydroxyapatite, 20% is organic material, and 10% is water. Magnification: x1200 when printed 10 cm wide.
    K14SEM--tooth062B.jpg
  • Colored scanning electron micrograph (SEM) of clotting red blood cells from a 18 year old male's wisdom tooth tissue.  The red blood cells are starting to clot in this image.  Magnification: x2330 when printed 10cm wide.
    K14-sem-tissue077.jpg
  • Thermophilic bacteria . Collected in the summer of 2012 in 60C water in Yellowstone National Park, Wyoming USA.  This scanning electron micrograh (SEM) was shot at 17,131X magnification and the filed of view is 7 um.  This type of bacteria is adapted to thrive at high water temperatures and is currently the focus of biological researchers.   Bacteria that can live in these extreme conditions are called thermophiles or extremophiles.
    K12-thermo35A.jpg
  • Scanning electron microscope image of the mouth parts of a mosquito larva (family Culicidae).  The collection of hairs (light brown) are feeding structures used to filter water. The hairs beat through the water filtering out algae, bacteria and other micro-organisms that the larva feeds on.The calibration bar is 100 um and was take at a magnification of 1,440 x. ..
    K08semmosquito-larva023.jpg
  • .Monarch Butterfly scales (Danaus plexippus)  Colored Scanning Electron Micrograph (SEM) of scales from the wing.  Magnification is 800 x and represents a field of view of .01 mm.
    K08SEMmonarch-WING043.jpg
  • .Monarch Butterfly scales (Danaus plexippus)  Colored Scanning Electron Micrograph (SEM) of scales from the wing.  Magnification is 210 x and represents a field of view of .4 mm.
    K08SEMmonarch-Wing037B.jpg
  • .Monarch Butterfly scales (Danaus plexippus)  Colored Scanning Electron Micrograph (SEM) of scales from the wing.  Magnification is 210 x and represents a field of view of .4 mm.
    K08SEMmonarch-WING037.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae