Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 143 images found }

Loading ()...

  • An X-ray of an energy efficient light bulb.
    energy-bulb1blue.jpg
  • An X-ray of an energy efficient light bulb.
    energy-bulb1blue.tif
  • An X-ray of an energy efficient light bulb.
    energy-bulb1blue.jpg
  • X-ray of an energy efficient light bulb. This buld uses Light emmitting diode (LED) technology. THis is a false color x-ray.
    K14X-LED-bulb01C.jpg
  • X-ray of an energy efficient light bulb. This bulb uses Light emmitting diode (LED) technology.
    K15X-newLED002D.jpg
  • X-ray of an energy efficient light bulb. This buld uses Light emmitting diode (LED) technology. THis is a false color x-ray.
    K14X-LED-bulb01.jpg
  • X-ray of an energy efficient light bulb.
    K12X-light3comboB.jpg
  • X-ray of an energy efficient light bulb.
    K12X-light3A.jpg
  • An energy efficient light bulb.
    K12X-light3-optical.jpg
  • X-ray of an energy efficient light bulb. This bulb uses Light emmitting diode (LED) technology.
    K15X-newLED002C.jpg
  • X-ray of an energy efficient light bulb. This bulb uses Light emmitting diode (LED) technology.
    K15X-newLED002B.jpg
  • X-ray of an energy efficient light bulb. This buld uses Light emmitting diode (LED) technology. THis is a false color x-ray.
    K14X-LED-bulb01D.jpg
  • X-ray of an energy efficient light bulb. This buld uses Light emmitting diode (LED) technology. THis is a false color x-ray.
    K14X-LED-bulb01B.jpg
  • X-ray of an energy efficient light bulb.
    K11-xbulbsc2.jpg
  • X-ray of an energy efficient light bulb.
    K11-xbulbsc1.jpg
  • X-ray of an energy efficient light bulb.
    K12X-light3combo.jpg
  • X-ray of an energy efficient light bulb. This bulb uses Light emmitting diode (LED) technology.
    K15X-newLED002.jpg
  • X-ray of an energy efficient light bulb.
    K12X-light3B.jpg
  • Thermogram of an energy efficient fluorescent light.  These lights use less energy than incandescent lights and operate at a cooler temperature.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1643.jpg
  • Thermogram of an energy efficient fluorescent light.  These lights use less energy than incandescent lights and operate at a cooler temperature.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1652.jpg
  • Thermogram of an energy efficient fluorescent light.  These lights use less energy than incandescent lights and operate at a cooler temperature.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1641.jpg
  • Thermogram of an energy efficient fluorescent light.  These lights use less energy than incandescent lights and operate at a cooler temperature.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1654.jpg
  • This is a demonstration of a ball rolling down an incline, slowing down, and then speeding back to where it started.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8298.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8263.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207blue.jpg
  • .This is a demonstration of a ball rolling down an incline and making the loop-the-loop path.  The velocity required to make the loop is called the critical velocity.   The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-loop8115red.jpg
  • .This is a demonstration of a ball rolling down an incline. The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-lAccel8115red.jpg
  • .This is a demonstration of a ball rolling down an incline. The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-lAccel8115blue.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207.jpg
  • .This is a demonstration of a ball rolling down an incline and almost making the loop-the-loop path.  The ball does not have enough velocity to make the loop.  The velocity required to make the loop is called the critical velocity, and this show a situation where the ball leaves the surface of the track, or the normal force from the track on the ball is zero.  The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a sub critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-looploop8096white.jpg
  • .This is a demonstration of a ball rolling down an incline and making the loop-the-loop path.  The velocity required to make the loop is called the critical velocity.   The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-loop8115white.jpg
  • .This is a demonstration of a ball rolling down an incline and almost making the loop-the-loop path.  The ball does not have enough velocity to make the loop.  The velocity required to make the loop is called the critical velocity, and this show a situation where the ball leaves the surface of the track, or the normal force from the track on the ball is zero.  The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a sub critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-looploop8096.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207red.jpg
  • An X-ray of a modern LED light bulb reveals the structure of the internal electronics. This design is very energy efficient.
    K19X-LEDbulb-TWIST5C.jpg
  • An X-ray of a modern LED light bulb reveals the structure of the internal electronics. This design is very energy efficient.
    K19X-LEDbulb-TWIST5A.jpg
  • A demonstration electric motor.  This motor works on the principles of electromagnetism. Electric current running through the coil a magnetic field that opposes the bar magnets and causes the central shaft to rotate.  This converts electrical energy into rotary mechanical motion. .
    K11-motor4179.jpg
  • A stroboscopic image of a trebuchet launching a ball.  The trebuchet uses the potential energy of a weight falling to project a yellow ball.  A trebuchet is a type of catapult that was used as a siege engine in the Middle Ages. It is sometimes called a counterweight trebuchet or counterpoise trebuchet, to distinguish it from an earlier weapon called the traction trebuchet, which employed pulling men working the mechanism.  The counterweight trebuchet appeared in both Christian and Muslim lands around the Mediterranean in the 12th century. It could fling projectiles weighing up to 350 pounds (160 kg) at or into enemy fortifications. Its use continued into the 15th century, well after the introduction of gunpowder.
    K14-trebuchet0126.jpg
  • A stroboscopic image of a trebuchet launching a ball.  The trebuchet uses the potential energy of a weight falling to project a yellow ball.  A trebuchet is a type of catapult that was used as a siege engine in the Middle Ages. It is sometimes called a counterweight trebuchet or counterpoise trebuchet, to distinguish it from an earlier weapon called the traction trebuchet, which employed pulling men working the mechanism.  The counterweight trebuchet appeared in both Christian and Muslim lands around the Mediterranean in the 12th century. It could fling projectiles weighing up to 350 pounds (160 kg) at or into enemy fortifications. Its use continued into the 15th century, well after the introduction of gunpowder.
    K14-trebuchet0127.jpg
  • A car spark plug firing.  The spark plug is the trigger that causes the gasoline to burn at a specific time in the cars internal combustion engine.  The spark plug fires and give the gas/air mixture the activation energy to start to burn.  This is a critical component in the thermodynamic cycle of an internal combustion engine.  A dirty or poorly adjusted spark plug will cause an engine to mis-fire, or fail to run.
    K10sparkplug_2234.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7111.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7101.jpg
  • A close-up car spark plug firing.  The spark plug is the trigger that causes the gasoline to burn at a specific time in the cars internal combustion engine.  The spark plug fires and give the gas/air mixture the activation energy to start to burn.  This is a critical component in the thermodynamic cycle of an internal combustion engine.  A dirty or poorly adjusted spark plug will cause an engine to mis-fire, or fail to run.
    K10sparkplug2362.jpg
  • A car spark plug firing.  The spark plug is the trigger that causes the gasoline to burn at a specific time in the cars internal combustion engine.  The spark plug fires and give the gas/air mixture the activation energy to start to burn.  This is a critical component in the thermodynamic cycle of an internal combustion engine.  A dirty or poorly adjusted spark plug will cause an engine to mis-fire, or fail to run.
    K10sparkplug2330.jpg
  • A ball bounces on a spring.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    spring8081.jpg
  • A sample of Uranium ore conglomerate from Ontario Canada.  This image was created by placing the slice of radioactive conglomerate on a sheet of sensitive x-ray film for four days.  The darkest spots represent the highest sources of radiation.  The radiation is gamma, beta, and gamma..Uranium ore is also called pitchblende.  Pitchblende is a form of the uranium ore (uranium oxide).  This highly radioactive black ore is made up of uranium (U) and oxygen (O) in the chemical formula U3O8. As an uranium source it is important for the nuclear industry. .This is part of a series.  The other images in the series show the rock sample in optical light.
    Uo2-rock-radiation-B-aligned.jpg
  • An x-ray of a gas pump nozzle.
    K08X-gasspump-BG.jpg
  • A sample of Uranium ore conglomerate from Ontario Canada.  This image was created by placing the slice of radioactive conglomerate on a sheet of sensitive x-ray film for four days.  The brightest spots represent the highest sources of radiation.  False color was applied to the black and white image. The radiation is gamma, beta, and gamma..Uranium ore is also called pitchblende.  Pitchblende is a form of the uranium ore (uranium oxide).  This highly radioactive black ore is made up of uranium (U) and oxygen (O) in the chemical formula U3O8. As an uranium source it is important for the nuclear industry. .This is part of a series.  The other images in the series show the rock sample in optical light.
    Uo2-rock-radiation-A.jpg
  • A velomobile or bicycle car is a human-powered vehicle, enclosed for protection from weather and collisions.  Here a young man is peddling the velomobile in a recumbent position.  The velomobile is built on a recumbent bike frame with two steerable wheels in the front and one wheel in the back.  This tricycle design allows for a stable vehicle on wet roads.  The vehicle is air streamed to decrease wind resistance and shield the rider from rain.  As fuel consumption becomes more of an issue, more commuters will switch to human powered vehicles.
    K08velomobile9963.jpg
  • A velomobile or bicycle car is a human-powered vehicle, enclosed for protection from weather and collisions.  Here a man is peddling the velomobile in a recumbent position.  The velomobile is built on a recumbent bike frame with two steerable wheels in the front and one wheel in the back.  This tricycle design allows for a stable vehicle on wet roads.  The vehicle is air streamed to decrease wind resistance and shield the rider from rain.  As fuel consumption becomes more of an issue, more commuters will switch to human powered vehicles.
    K08velomobile0106.jpg
  • A sample of Uranium ore conglomerate from Ontario Canada..The uranium is the dark material between the large quartz pebbles..Uranium ore is also called pitchblende.  Pitchblende is a form of the uranium ore (uranium oxide).  This highly radioactive black ore is made up of uranium (U) and oxygen (O) in the chemical formula U3O8. As an uranium source it is important for the nuclear industry. .This is part of a series.  The other images in the series show the radiation from this specimen.
    Uo2-rock-optical.jpg
  • A velomobile or bicycle car is a human-powered vehicle, enclosed for protection from weather and collisions.  Here a young man is peddling the velomobile in a recumbent position.  The velomobile is built on a recumbent bike frame with two steerable wheels in the front and one wheel in the back.  This tricycle design allows for a stable vehicle on wet roads.  The vehicle is air streamed to decrease wind resistance and shield the rider from rain.  As fuel consumption becomes more of an issue, more commuters will switch to human powered vehicles.
    K08velomobile9969.jpg
  • A tennis ball moving at 95 feet per second, or 28.95 meters per second is captured in flight just after a collision with a  cinderblock wall. The tennis ball was launched from an air cannon as is commonly used to practice tennis.
    K18AfterCollision6922.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/20,000th of a second.  In all collisions momentum is conserved. .
    K07-golfb0167.jpg
  • A tennis ball moving at 95 feet per second, or 28.95 meters per second collides with a cinderblock wall. During the collision, the tennis ball compresses. In this type of Collison momentum is conserved. The tennis ball was launched from an air cannon as is commonly used to practice tennis.
    K18HittingWall6919.jpg
  • A tennis ball moving at 95 feet per second, or 28.95 meters per second collides with a cinderblock wall. During the collision, the tennis ball compresses. In this type of Collison momentum is conserved. The tennis ball was launched from an air cannon as is commonly used to practice tennis.
    K18HittingWall6913.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/1,000,000th of a second.  In all collisions momentum is conserved. .
    K07-golfb0152.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/1,000,000th of a second.  In all collisions momentum is conserved.   This ball is a soft driving ball - not a regulation play ball..
    K07-golfb0147.jpg
  • A tennis ball moving at 95 feet per second, or 28.95 meters per second is captured in flight just before it collides with a cinderblock wall. The tennis ball was launched from an air cannon as is commonly used to practice tennis.
    K18BeforeCollision6927.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1327.jpg
  • Thermogram of a house in winter.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-376.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-36.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-16.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks606B.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5002.jpg
  • An x-ray of a gas pump nozzle.
    K08X-gasspump-BR.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-45.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks608E.jpg
  • K18sparks002CUA.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42504A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5001.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks608E.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks606B.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks001A.jpg
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseD-ir-combo1.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseC-ir-combo.tif
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseC-ir02.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseA-ir-combo.tif
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-18.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-29.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-15.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-9.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42505A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42502A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5002.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42502A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks607C.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks008A.jpg
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseD001.TIF
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07HouseB-IRNW.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseB-ir-combo.tif
  • A voltaic pile battery is used to light an LED.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-4110.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-46.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-42.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-44.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-14.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-2.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-3.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42503A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5001.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks008A.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae