Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 110 images found }

Loading ()...

  • An experiment is preformed to show how much liquid a pitcher of snow creates when it melts..This image is part of a series..
    K10snowmelt-montage1.jpg
  • An experiment is preformed to show how much liquid a pitcher of snow creates when it melts..This image is part of a series..
    K10blue-melt1.jpg
  • Barium chloride (BaCl2) emits a red-orange glow in a flame test.  In this experiment the barium chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the barium to show the characteristic orange flame.
    K13-barium029.JPG
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-45.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-36.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-16.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine911.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine910.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine907.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine845.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine841.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine840.JPG
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-18.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-29.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-15.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-9.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine854.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine850.JPG
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-46.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-42.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-44.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-30.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-3.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine912.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine853.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine852.JPG
  • A voltaic pile battery is used to light an LED.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-4110.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-39.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-37.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-34.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-17.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-14.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-2.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-1.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine913.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine909.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine908.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine851.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine848.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine846.JPG
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-5.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine844.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine843.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine842.JPG
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-47.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-35.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-11.jpg
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine847.JPG
  • .The unique fishbone pattern is created by two colliding steams of liquids.  Each stream or jet is created by a 1mm diameter nozzle.  This image if from a series of images where the velocity of the fluid jet is varied from .8 to 3 meters per second.  This pattern is currently the focus of scientists studying the strange world of fluid dynamics.  The pattern is a stable flow state that is a balance of surface tension,  viscosity, momentum, and gravity.  The fluid used in this experiment is 90% glycerol  and 10% water solution with a viscosity of 20cS.   This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 1x.  This pattern cal also be called the fish effect, herringbone effect, or the fishbone effect.
    K12glycerine839.JPG
  • Copper(II) chloride (CuCl2) emits a green-blue glow in a flame test.  In this experiment the copper chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the copper to show the characteristic green flame.
    K13-copper011.JPG
  • An apple and a feather are released at the same time.  The feather that is falling in a vacuum chamber falls at the same rate as the apple in the air.  The feather and the apple have metal pins in them that are attracted to the strong magnets in the release mechanism that can be seen at the top of the image.  The flash is triggered at 1/20th of a second interval.  The apple and feather do accelerate at the same rate..The vacuum pressure was 30 microns.
    K12-gravity-apple004.JPG
  • Copper(II) chloride (CuCl2) emits a green-blue glow in a flame test.  In this experiment the copper chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the copper to show the characteristic green flame.
    K13-copper019.JPG
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal head parts due to the ?ant mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07sem-fruitfly4.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal size eyes ? they are smaller than normal and are due to the ?eyeless mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07sem-fruitFLY2.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal antena due to the ?ant? mutation.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly3.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal bar shaped eyes ? they are smaller than normal and are due to the ?bar mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-bareye2.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal bar shaped eyes ? they are smaller than normal and are due to the ?bar mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-bareye1.jpg
  • SEM of a fruit fly mouth. Scanning Electron Micrograph (SEM) of the head of a  fruit fly (Drosophila melanogaster).  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-mouth3.jpg
  • Tornado made by a laboratory apparatus. These model tornadoes are used to study the structure of wind velocities inside the vortex. Each year the complex nature of tornadoes gets better understood. Experiments like these lead give Meteorologists and weather forecasters the ability to predict the path of a tornado with greater accuracy.
    IMG_3537al.jpg
  • A feather is dropped.  The motion is recorded with a strobe light that flashes 30 times a second (30 Hz).  The falling feather quickly is slows by air friction and reaches its terminal velocity.
    k13-best-feather-drop.jpg
  • A six month pinhole photo of the sun moving across the sky. The exposure started December 21, 2011 and ended on June 21, 2012.  The suns realative motion is recorded on one image.  Photographed in Rochester, New York, USA.
    K13-sun2-dec21-june21-2012.jpg
  • A feather is dropped.  The motion is recorded with a strobe light that flashes 30 times a second (30 Hz).  The falling feather quickly is slows by air friction and reaches its terminal velocity.
    K13-best-feather04.jpg
  • A six month pinhole photo of the sun moving across the sky. The exposure started December 21, 2011 and ended on June 21, 2012.  The suns relative motion is recorded on one image.  The lines are the sun crossing the sky each day - while the breaks in the lines are where the clouds blocked the sun.  Photographed in Rochester, New York, USA.
    K13-6-21-2012Small.jpg
  • A four month pinhole photo of the sun moving across the sky.  The exposure ended on December 21, 2011.  The sun is at the lowest angle in the sky on the winter equinox. Photographed in Rochestester, New York, USA
    K12-skypinhole21-2011B.jpg
  • A four week pinhole photo of teh sun moving across the sky.
    K12-skynov7-2011medium.jpg
  • A two week pinhole photo of the sun moving across the sky.  The exposure ended on september 17, 2011.  The sun is at the lowest angle in the sky on the winter equinox. Photographed Keuka Lake, New York, USA
    K12-skypinhole9-17-2011A.jpg
  • A four month pinhole photo of the sun moving across the sky.  The exposure ended on December 21, 2011.  The sun is at the lowest angle in the sky on the winter equinox. Photographed in Rochestester, New York, USA
    K12-skypinhole21-2011A.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-20cm_0208.jpg
  • A demonstration electric motor.  This motor works on the principles of electromagnetism. Electric current running through the coil a magnetic field that opposes the bar magnets and causes the central shaft to rotate.  This converts electrical energy into rotary mechanical motion. .
    K11-motor4179.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 45 degrees to the horizontal.
    bloodsplatter-20cm-45deg_0202.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-21cm_0186.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 75 degrees to the horizontal.
    bloodsplatter-20cm-75deg_0199.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 45 degrees to the horizontal.
    bloodsplatter-20cm-45deg_0201.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-21cm_0188.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-100cm_0196.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell differnent heights.  The height of the drops on the bottom row were 5 cm, second row from the bottom is 15 cm, third row from the bottom is 20, the top row is 30 cm.  There drops all fell onto a flat paper surface.
    bloodsplatter-20cm-calibration_0216.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a paper surface angled at 80 degrees to the horizontal.
    bloodsplatter-20cm-80deg_0204.jpg
  • Blood droplet. In forensic science, the pattern created by projected blood is analyzed to determine information about the origin on the body, the weapon used and the number of blows, the relative position of the victim and assailant, and the sequence of events. This is a single drop that fell 20 cm onto a flat paper surface.
    bloodsplatter-20cm_0193.jpg
  • Ice water is placed in a beaker and the air is removed in a vacuum chamber.  Then the air pressure is lower that the waters vapor pressure the liquid will boil.
    K12vac-boil-icewater004.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coils806.JPG
  • A special compression driver speaker is mounted to the left of the glass.  When the speaker is set to the resonance of the glass - vibrations will constructively interfere with each other until the glass breaks.  This demonstration takes a special speaker, a frequency generator, and an amplifier that can drive the speaker at 120 watts.  The action is captured with a high speed flash operating at 1/20,000th of a second. This image is one out of a set of two showing before and during the glass shattering..
    K12HS-glass-break008-cleaned.jpg
  • The vacuum chamber setup to boil ice water in a vacuum.  Ice water is placed in a beaker and the air is removed in a vacuum chamber.  Then the air pressure is lower that the waters vapor pressure the liquid will boil.
    K12vac-boil-icewater001.JPG
  • High viscosity honey is poured out of a 6 mm hole.  Honey will naturally start to coil when it hits a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coil-honey906.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coil-902.JPG
  • Glass of water with a sample of pumice floating.  This demonstration shows that the density of pumice is less than the density of water.
    pumice-floating_0088.jpg
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow005.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow001.JPG
  • An apple and a feather are released at the same time.  The feather that is falling in a vacuum chamber falls at the same rate as the apple in the air.  The feather and the apple have metal pins in them that are attracted to the strong magnets in the release mechanism that can be seen at the top of the image.  The flash is triggered at 1/20th of a second interval.  The apple and feather do accelerate at the same rate..The vacuum pressure was 30 microns.
    K12-gravity-apple001.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coils813.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coils812.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coils810.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coil-901.JPG
  • Iron fillings showing the magnetic field of two ring magnets. The magnetic field induces magnetism in each of the filings, which then line up in the field. Although the field is actually continuous, interactions between the filings cause them to accumulate in thin arcing lines.This image is part of a seris.
    magnetic-iron-fields_0129.jpg
  • A balloon is placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the balloon to expand.  The trapped air expands to many the original volume and the balloon grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-pink-balloon001.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow007.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow006.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow002.JPG
  • Marshmallows are placed in a vacuum chamber and the air is removed.  As the air is removed the pressure drops causing the air trapped in the marshmallows to expand.  The trapped air expands to many the original volume and the marshmallows grows in size.  This image is part of a series taken at different vacuum pressures.
    K12vac-marshmallow003.JPG
  • Ice water is placed in a beaker and the air is removed in a vacuum chamber.  Then the air pressure is lower that the waters vapor pressure the liquid will boil.
    K12vac-boil-icewater002.JPG
  • High viscosity corn syrup is poured out of a 6 mm hole.  These types of liquids will naturally start to coil when they hit a surface.  This rope coil effect is often seen when pouring syrup on food.  This image was taken with a high speed flash at 1/40,000th of a second at at a magnification of 2x.
    K12coils811.JPG
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae