Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 88 images found }

Loading ()...

  • A black belt karate expert brakes a wooden board with his bare hand..The image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second. .
    karate_9324.jpg
  • A black belt karate expert brakes a wooden board with his bare hand.  The image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second. ..
    karate_9535sm.jpg
  • A Tennis Ball hitting a Racket .  Note the deformation of both the tennis ball and the tennis racket.  The ball has a velocity of approximately 20 meters per second in this image.  This image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second.
    tennis8527.jpg
  • A Tennis Ball hitting a Racket .  Note the deformation of both the tennis ball and the tennis racket.  The ball has a velocity of approximately 20 meters per second in this image.  This image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second.
    tennis8526.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5855.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4829.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4648.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9862PR-cropped.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9738PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5795.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5649.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5450.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5287.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2100300012_RT8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6817.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6794.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6528.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6525.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6511.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6824B.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6743.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    fantastic2003.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    bIMG_4779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    070214frost0006.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    Snowflake05-1936.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K14-snowflake9024A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13snow006A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6840.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5107.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4206.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    coin_5128.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13Snow011A.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11snowflake6501.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6507.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5804.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5429.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4967.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300134_rt8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300089_RT8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    k11-snowflake0058.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6846.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6819.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9604PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5329.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5221.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5194.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4961.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4604.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    snowKINSMAN5287.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8574.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8520.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8784.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8626.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8563.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8505.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8558.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8545.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8632.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8607.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8584.jpg
  • A ball bounces on a spring.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    spring8081.jpg
  • Polarized light photograph of ice crystals. Under polarized light the ice appears to have many colors within it. The colors are due to the ice crystals being birefringent in polarized light.
    K17Polarized-ice_0302.jpg
  • Polarized light photograph of ice crystals. Under polarized light the ice appears to have many colors within it. The colors are due to the ice crystals being birefringent in polarized light.
    K17Polarized-ice_0292.jpg
  • Eastern Wood Frog (Rana sylvatica).  Eastern Wood Frog Hibernating.  This special frog, found in the eastern parts of the united states has the ability to freeze solid and recover with out any ill effects.  This frog is frozen solid at 25F and took about an hour to warm up and hop away.
    K12-woodfrog7126frozen.jpg
  • A .45 caliber bullet exiting the gun. This image is part of a series taken 1/1,000,000th of a second apart.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-45auto-sequence1.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4400.jpg
  • The supersonic shockwave that exits the barrel a .22 caliber rifle in front of the bullet.  This pressure wave is responsible for the loud sound of the gun.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quicksho4416.jpg
  • Here a candle is seen in a polarizing interferometer. The different colors of light represent different air pressures. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-candle_8452.jpg
  • A .357 caliber bullet is fired from a hand gun.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-357magt4426.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0046.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0030X.jpg
  • A .45 caliber handgun firing a bullet.  This image freezes the motion by using a high speed flash with a duration of   1/2,000,000th of a second.  The sparks are from gunpowder that was still burring as it left the barrel behind the bullet.
    K0845calB_3822B.jpg
  • A .45 caliber bullet exiting the gun. This image is part of a series taken 1/1,000,000th of a second apart.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-45auto-sequence2.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The lack of a bow wave in front of the bullets shows that the bullet is moving slower than the speed of sound.  This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.  .
    K08-22subsonic_4411.jpg
  • A .45 caliber bullet exiting the spent gunpowder.  This event takes place approximately 6 inches in front of the gun.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quicksho4424.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0046X.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0015.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0046X.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0030A.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0028.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0015.jpg
  • A .45 caliber handgun firing a bullet.  This image freezes the motion by using a high speed flash with a duration of   1/2,000,000th of a second.  The sparks are from gunpowder that was still burring as it left the barrel behind the bullet.
    K0845calB_3822B2.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4398.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0028.jpg
  • A .45 caliber handgun firing a bullet.  This image freezes the motion by using a high speed flash with a duration of   1/2,000,000th of a second.  The sparks are from gunpowder that was still burring as it left the barrel behind the bullet.
    K0845calA_3822.jpg
  • A .45 caliber bullet exiting the gun. This image is part of a series taken 1/1,000,000th of a second apart.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-45autot_4439.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4398blue.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae