Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 48 images found }

Loading ()...

  • A special compression driver speaker is mounted to the left of the glass.  When the speaker is set to the resonance of the glass - vibrations will constructively interfere with each other until the glass breaks.  This demonstration takes a special speaker, a frequency generator, and an amplifier that can drive the speaker at 120 watts.  The action is captured with a high speed flash operating at 1/20,000th of a second. This image is one out of a set of two showing before and during the glass shattering..
    K12HS-glass-break008-cleaned.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-7.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-9.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-5.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-8.jpg
  • A light is mounted to the end of a spring.  The pendulum and bouncing action of the spring trace out Lissajous patterns in space.
    K09spring003.jpg
  • A light is mounted to the end of a spring.  The pendulum and bouncing action of the spring trace out Lissajous patterns in space.
    K09spring002.jpg
  • The strong electric fields created by the tesla coil cause the gas in a neon emission tube to glow.
    K10teslane3833.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3232A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0415A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0490.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0543.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0485.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0473A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0489.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3212.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3231-EditA.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0553.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0257.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0540.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3236A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3285A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0528.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3353A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations-Kelido-_3285A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3281A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_3303A.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations_0491.jpg
  • Here a small dish of water is mounted on a speaker and vibrated at different frequencies. At specific frequencies standing waves are created. The frequency is dependent on the depth of the water, the size of the dish, and speed of waves in the liquid. Many modes of oscillation are possible in the same dish of water. To get better lighting black ink was added to the water
    K21-water-vibrations-9-images.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration079.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration072.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration075.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration074.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration062.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration076.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration067.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare03.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration078.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration071.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration065.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration064.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare001.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7111.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare002.jpg
  • The inside of a magnetron removed from a microwave oven.  The magnetron is a device that creates microwave radiation. A magnetron consists of an electron tube surrounded by a magnet. As electrons are released from the heated cathode they are forced to take a spiral path to the anode by the magnetic field, creating microwaves. This magnetron creates a microwave radiation that is the same frequency as a water molecule vibrates.  When water is exposed to just the right frequency, the water molecules will gain kinetic energy and become hotter.
    K11-magnetron7101.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration068.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare-set2.jpg
  • A Synthetic quarts crystal that is lab grown.  This crystal will be cut into sections that will be manufactured into optical components and electrical quartz crystal oscillators. Quartz creates an electrical signal with a very precise frequency that is used to provide a stable clock signal to the rest of the circuit.
    K14synthetic-quarts2613.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae