Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 102 images found }

Loading ()...

  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6525.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6511.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4648.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    Snowflake05-1936.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K14-snowflake9024A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6817.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6794.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6779.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6528.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6840.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9738PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5855.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5795.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5649.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5450.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5287.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4829.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    070214frost0006.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13Snow011A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13snow006A.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11snowflake6501.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6743.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9862PR-cropped.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    fantastic2003.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2100300012_RT8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    k11-snowflake0058.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6846.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6507.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6824B.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5107.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4967.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4206.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    coin_5128.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    bIMG_4779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    snowKINSMAN5287.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6819.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5804.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5429.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300134_rt8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300089_RT8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9604PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4961.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5329.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5221.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5194.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4604.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02768.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03236.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03098.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03067.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02816.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02792.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02802.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02776.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03198.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03088.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03076.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02832.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02780.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02795.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02770.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02868.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-03268.jpg
  • Two water drips collide. One drip hits a surface of water and rebounds at the exact time a second drip calls. The resulting collision makes a spray of water. This effect is photographed with a high speed flash and is effectively frozen in time with a 20 microsecond flash.
    K21-Double-Water-Drips-02808.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0449.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0427.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips001.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0319.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips008.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips003.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips017.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips014.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips007.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips005.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips018.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips002.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips016.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips013.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips011.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips012.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips010.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips009.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips004.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips015.jpg
  • Two water drips collide.  One drip hits a surface of water and rebounds at the exact time a second drip calls.  The resulting collision makes a spray of water.  This effect is photographed with a high speed flash and is effectively frozen in time with a 1/60,000 second flash.
    K08-drips006.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8520.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8574.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8784.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8505.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8626.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8563.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8558.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8545.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8632.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8607.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8584.jpg
  • This image of a man over inflating a balloon was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    tedk0025.jpg
  • This image is part of a sequence where a man over inflates a balloon until it burst.  The image was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    K11-hsballoon6873A.jpg
  • This image is part of a sequence where a man over inflates a balloon until it burst.  The image was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    K11-hsballoon6863A.jpg
  • This image is part of a sequence where a man over inflates a balloon until it burst.  The image was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    K11-hsballoon6826.JPG
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae