Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 61 images found }

Loading ()...

  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glow2A.jpg
  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glow2-010A.jpg
  • An image of Cycloseris erosa coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals036.JPG
  • An image of Cycloseris erosa coral in Short wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals033.JPG
  • An image of Pectinia species coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals012.JPG
  • An image of Acanthastrea lordhowensis coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals008.JPG
  • An image of Acanthastrea lordhowensis coral in Long wave UV Light showing orange Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals007.JPG
  • An image of Favites pentagona coral in Long wave UV Light showing green and orange Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals006.JPG
  • An image of Caulastrea Curata coral in long wave UV light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals039.JPG
  • An image of Caulastrea Curata coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals040.JPG
  • An image of Cycloseris erosa coral in white Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals037.JPG
  • An image of Cycloseris erosa coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals034.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals030.JPG
  • An image of Stichodactyla taptum anemone in long wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals029.JPG
  • An image of Acanthastrea lordhowensis coral in white light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals009.JPG
  • An image of Favites pentagona coral in white Light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals005.JPG
  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glowmushC8381 copy.jpg
  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glowmushC8370.jpg
  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glow1-043.jpg
  • An image of Scolymia australis coral white Light.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals004.JPG
  • Fluorescent light is used to image the bud of a cannabis plant. The trichomes on the bud of a cannabis (Cannabis sativa) plant are full of Tetrahydrocannabinol (THC)and glow green. The chlorophyll filled cells of the leaf glow red. The width of the green trichome heads is 90 um
    K18glow-cannabisbud1710110903A.jpg
  • Fluorescent light is used to image the bud of a cannabis plant. The trichomes on the bud of a cannabis (Cannabis sativa) plant are full of Tetrahydrocannabinol (THC)and glow green. The chlorophyll filled cells of the leaf glow red. The width of the green trichome heads is 90 um, or about the width of a human hair. This is an example of a plant that is past harvest time as the THC laden trichome heads have started to shrivel.
    K18glow-cannabisbud17-10ZSA.jpg
  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glowmush1A.jpg
  • A species of glow in the dark mushroom, Panellus stipticus. This naturally occurring bio-luminescent mushroom is common in New England forests in the fall. This species lives on partially decayed oak and uses a unique chemical reaction to digest chemicals in the oak that are toxic to other fungi. Part of a series showing the mushroom in visible and bio-luminescent light.
    K13-glowmush1-combo.jpg
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals024.JPG
  • An image of Stichodactyla taptum anemone in white Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals031.JPG
  • An image of Cycloseris erosa coral in white Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals032.JPG
  • An image of Stichodactyla taptum anemone in unfiltered UV Light showing Fluorescence.  In this image there is a large amout of blue light that is so bright is it difficult to see the florescent tissues.  This iis what a diver would see with out the blue blocking filter.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals027.JPG
  • Fluorescent light is used to image the bud of a cannabis plant. The trichomes on the bud of a cannabis (Cannabis sativa) plant are full of Tetrahydrocannabinol (THC)and glow green. The chlorophyll filled cells of the leaf glow red. The width of the green trichome heads is 90 um, or about the width of a human hair. This is an example of a plant that is past harvest time as the THC laden trichome heads have started to shrivel.
    K18glow-cannabisCS-442A.jpg
  • Ripe bananas in Ultra Violet (UV) light.  This is part of a pair of image to compare bananas in normal light and UV light.  The stressed cells around the brown spots glow under the UV light.
    K11-UVbanana002.JPG
  • An image of Pectinia species coral in Long wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals002.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0183.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0182.jpg
  • Crookes tube. Invented by William Crookes (1832 - 1919) in the late 19th century.  This apparatus was used to investigate the path taken by electrons or cathode rays as they were called then.   In this experiment the electrons are emitted from a central disc towards the glass.  As the electrons collide with the glass they fluoresce.   The metal star pattern blocks the electrons causing a shadow on the glass.  Crookes showed from the resulting shadow that electrons travel in straight lines.  The overall glow of the apparatus is caused by the excitation of the remaining gas molecules in the tube.
    K08crookes0372.jpg
  • Fluorescent Coral in Long Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in long wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals042.JPG
  • Fluorescent Coral in Short Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in short wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals043.JPG
  • Fluorescent Coral in white light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals041.JPG
  • The corona discharge from a Wimshurst machine.  This machine glows as the high voltage from the static electric generator ionized the surrounding air.  This image was taken with a modern camera able to photograph at very low levels of light.  This effect is bright enough to be observed with human eyes in a very dark room.
    K16wimshurst00149.jpg
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals001.jpg
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals010.JPG
  • Fluorescent Coral in White Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals003.JPG
  • Fluorescent Coral in White and UV Light. An image of Pectinia species coral in white light. This species of coral will grow brightly when illuminated in ultra-violet(UV) light.  Each head of coral is formed by a colony of genetically identical polyps which secrete a hard skeleton of calcium carbonate; this makes them important coral reef builders. This image is part of a series showing the identical specimen in white light and UV light..
    K12UVcorals011.JPG
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0179.jpg
  • A high sensitivity camera was used to collect all the flashes from a field with fireflies. This species is identified as Photinus obscurellus. Shown here is a collection of flashes covering 5 minutes. This field is located near Honeoye Falls, New York and was taken just after 10pm on July 8th at a temperature of 88F. The temperature affects the flashing pattern of the fireflies.
    K20Fire-fly-hyde-park18039A.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4005.jpg
  • A field that is the ideal habitat for fireflies. This species is identified as Photinus obscurellus.  This field is located near Honeoye Falls, New York. Here the field is seen just at dusk
    K20Fire-fly-hyde-park1662-Dusk.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16bullet-sugarcubes0202.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3991.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite (green) and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3988.jpg
  • A high sensitivity camera was used to collect all the flashes from a field with fireflies. This species is identified as Photinus obscurellus. Shown here is a collection of flashes covering 5 minutes. This field is located near Honeoye Falls, New York and was taken just after 10pm on July 8th at a temperature of 88F. The temperature affects the flashing pattern of the fireflies. Here the field is seen on the left just at dusk
    K20Fire-fly-hyde-park1662A.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0180.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16pellet-sugarcubes0201B.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0175.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver0174.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0176.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4001.jpg
  • The strong electric fields created by the tesla coil cause the gas in a neon emission tube to glow.
    K10teslane3833.jpg
  • Copper(II) chloride (CuCl2) emits a green-blue glow in a flame test.  In this experiment the copper chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the copper to show the characteristic green flame.
    K13-copper011.JPG
  • Barium chloride (BaCl2) emits a red-orange glow in a flame test.  In this experiment the barium chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the barium to show the characteristic orange flame.
    K13-barium029.JPG
  • Copper(II) chloride (CuCl2) emits a green-blue glow in a flame test.  In this experiment the copper chloride is placed in a watch glass and saturated with ethanol.  The burning ethanol heats the copper to show the characteristic green flame.
    K13-copper019.JPG
  • The leaf of a hops plant (Humulus lupulus) was dyed with florisene dye and photographed in UV light. The florisene dye shows the location of the veins in the leaf as yellow, while the normally green chlorophyll glows red under the UV light
    K19hops-leaf-1615B.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae