Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 225 images found }

Loading ()...

  • Thermogram of shoes next to a heat duct.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-576.jpg
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseD-ir-combo1.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseC-ir-combo.tif
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseC-ir02.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseA-ir-combo.tif
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07HouseD-IR01.tif
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07HouseB-IRNW.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseB-ir-combo.tif
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseA-IR-NW.tif
  • X-ray of a thermos or vacuum flask. The internal chamber (red), and the liquid that it contains, is kept hot or cold by an insulating vacuum.  The vacuum is contained in an aluminum coated glass container.  The internal walls of the flask are coated with aluminum to reflect heat that is radiated away. Most of the heat will be gained or lost through the neck of the flask. .
    K11X-thermos1.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine. .
    K12-combustion8008.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine. .
    K12-combustion7955.jpg
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseD-ir-combo2.tif
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine.  This image is part of a sequence showing the chamber before and after ignition..
    K12-combustion8014.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine.  This image is part of a sequence showing the chamber before and after ignition..
    K12-combustion8020.jpg
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseD001.TIF
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseA001.TIF
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseC002.TIF
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseB002.TIF
  • Thermogram of resistive heating of a wire.  The large amount of current going through the wire is responsible for heating up the wire. .  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-265.jpg
  • Thermogram of steam pipes for a hot water heating system.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-1079.jpg
  • Thermogram of steam pipes for a hot water heating system.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-1077.jpg
  • Thermogram of a house in winter.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-376.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1079.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1045.jpg
  • A Thermogram of a hot rifle.  This gun has just fired a dozen bullets and the barrel is quite hot.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    gun-1.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1032black.jpg
  • A schlieren image of a a man breathing through his mouth.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0285.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schflame-B_1074.jpg
  • A Schlieren image of a carbon dioxide gas leaving a high preasure tank.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07SchCo2-tank_1252.jpg
  • A schlieren image of a Hair Dryer.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1371.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1025.jpg
  • A schlieren image of compressed air.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schl0143.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Schballoon-pop_1235.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1346.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1083.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1063.jpg
  • A schlieren image of a man drinking hot coffee .  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1028.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0869.jpg
  • A schlieren image of a sparkler.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0844.jpg
  • A schlieren image of a a man breathing through his nose.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0282.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0194.jpg
  • A schlieren image of a gas handheld lighter being ignited.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0155.jpg
  • A schlieren image of a man drinking hot coffee.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1020.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0882.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1327.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1014.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Sch-pop1234.jpg
  • Thermogram of a hand and thermal shadow.  The hand was placed on the desk top for a few minutes, then removed.  The warm area on the table is where the hand was placed.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1501.jpg
  • Thermogram of a hand and thermal shadow.  The hand was placed on the desk top for a few minutes, then removed.  The warm area on the table is where the hand was placed.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1498.jpg
  • A Thermogram of a coffee machine as it warms up.  This is one image from a series. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-445.jpg
  • A Thermogram of a coffee machine as it warms up.  This is one image from a series. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-444.jpg
  • A Thermogram of a boy.  This image is part of a series and has a corresponding visible light image.   The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-419.jpg
  • Thermogram of two ice skaters.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-273.jpg
  • A boy holds a glass of hot water.  This image is part of a series showing the identical scene in far infrared light.  The comparison of image in the series show the power of far infrared light to detect changes in temperature.
    ir07-198visible.jpg
  • A boy holds a gun in a bag.  This image is part of a series showing the identical scene in far infrared light.  The comparison of image in the series show the power of far infrared light to see through materials like the plastic bag teh boy is holding.
    ir07-192visible.jpg
  • A Thermogram of a young girl sleeping.  This image is part of a series.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1912.jpg
  • A Thermogram of fireplace.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-163.jpg
  • A Thermogram of a young child lost in the woods.  This image is part of a series.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1603.jpg
  • Thermogram of penguins.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1400.jpg
  • Thermogram of two White Rhinos (Ceratotherium simum).  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1362.jpg
  • Thermogram of a woman. This image is part of a series including a matching image in visible light.   The different colors represent different temperatures on the object. The lightest colors are the coldest temperatures, while the darker colors represent a hotter temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1343.jpg
  • Thermogram of two Cinnamon Teal Ducks. (Anas cvanoptera)  Note the warm leg on the duck on the right - the ducks tuck one leg under their feathers to keep warm.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1309.jpg
  • Thermogram of a mouse.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1181.jpg
  • Thermogram of a girl eating pizza.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1149.jpg
  • Thermogram of milk jug and hand.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1147.jpg
  • Thermogram of a hot dishwasher and coffee machine.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    dish-washer.jpg
  • A boy holding up a sheet of black plastic. This image has a corresponding visible light image.  This plastic is opaque to visible light, but is transparent to far-infrared light.  This image was taken inthe far-infrared.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    combo-ir07-350.jpg
  • Here a candle is seen in a polarizing interferometer. The different colors of light represent different air pressures. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-candle_8452.jpg
  • The patterns in smoke are studied by illuminating the smoke with a scanning laser. The laser shows the motion in a 2D plain that is easier to study than the 3D motion. The coils represent cross section of fluid vortexes created by the convection currents from the hot smoke rising in the cool air. The source of the smoke is a stick of burning incense.
    K19Laser-Smoke6276.jpg
  • An x ray of a neon light bulb.  THis type of bulb is often used for spectrum experiments.
    x07-bulb12.jpg
  • Thermogram of children and a computer.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07kids-comp1.jpg
  • A Thermogram of a young boy without a hat.  This image was taken in winter.The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature.  This image is part of a set.
    Ir07-46.jpg
  • Thermogram of a woman ice skating.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-286.jpg
  • A Thermogram of a dog.  Note the dog's cold nose. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-250.jpg
  • A Thermogram of a young girl curling her hair with a hot iron.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-174.jpg
  • Thermogram of an energy efficient fluorescent light.  These lights use less energy than incandescent lights and operate at a cooler temperature.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1643.jpg
  • Thermogram of Guineafowl.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1470.jpg
  • Thermogram of a penguin.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1402.jpg
  • Thermogram of penguins.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1398.jpg
  • Thermogram of a boy drinking cold water.  This image is part of a series.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1314.jpg
  • Thermogram of a Scarlet Ibis. (Eudocimus ruber) The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1304.jpg
  • Thermogram of a mouse and a snake.  The cold blooded snake is much darker  (cooler) than the mouse.  The warm spot to the right is where the mouse was sitting for a while.   The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1245.jpg
  • Thermogram of a mouse and a snake.  The cold blooded snake is much darker  (cooler) than the mouse.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1242.jpg
  • Thermogram of a mouse.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1224.jpg
  • Thermogram of an Atlas Beetle (Chalcosoma atlas sulawesi)  The cold blooded insect is much cooler than the boy holding it.  The The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-1209.jpg
  • A Thermogram of an injured hand.  Note the colder temperature of the index finger.  The top part of the finger was lost in an accident.  The lack of blood flow in the finger results in a lower temperature.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-105.jpg
  • A Thermogram of a young girl and a cat.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-1034.jpg
  • The patterns in smoke are studied by illuminating the smoke with a scanning laser. The laser shows the motion in a 2D plain that is easier to study than the 3D motion. The coils represent cross section of fluid vortexes created by the convection currents from the hot smoke rising in the cool air. The source of the smoke is a stick of burning incense.
    K19Laser-Smoke6353.jpg
  • The patterns in smoke are studied by illuminating the smoke with a scanning laser. The laser shows the motion in a 2D plain that is easier to study than the 3D motion. The coils represent cross section of fluid vortexes created by the convection currents from the hot smoke rising in the cool air. The source of the smoke is a stick of burning incense.
    K19Laser-Smoke6022.jpg
  • An x ray of a projection light bulb.
    x07-reflector-bulb.jpg
  • Thermogram of a laptop computer.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-797.jpg
  • Thermogram of a hot toast.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-675.jpg
  • Thermogram of a staged crime scene.  By measuring the temperature of the body, a time of death can be estimated.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-572.jpg
  • A Thermogram of a coffee machine as it warms up.  This is one image from a series. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-513.jpg
  • A Thermogram of a coffee machine as it warms up.  This is one image from a series. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-440.jpg
  • A Thermogram of a young girl blowing a gum bubble.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-435.jpg
  • A Thermogram of a young girl blowing a gum bubble.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-432.jpg
  • A man holding up a sheet of black plastic. This image has a corresponding visible light image.  This plastic is opaque to visible light, but is transparent to far-infrared light.  This is in contrast to the man's glasses which are opaque to the IR light.  This image was taken inthe far-infrared.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-416.jpg
  • A Thermogram of a man.  This image is part of a series and has a corresponding visible light image.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-406.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae