Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 26 images found }

Loading ()...

  • The anti-reflection structures on the surface of one eye element on the head of a female mosquito.  (family Culicidae).  These bump structures interact with the wave nature of light to increase the transmission of light into the eye by decreasing the reflected light.  Structures such as this are beginning to be incorporated into modern optical devices    This is a scanning electron microscope image.  The calibration bar is 1 um and the magnification is 9220 x.
    K08semmosquito-b10red.jpg
  • Female mosquito eye (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 10 um and the magnification is 826x.
    K08semmosquito-b07red.jpg
  • Female mosquito eye (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 10 um and the magnification is 407 x.
    K08semmosquito-b06.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 200 um and the magnification is 243 x.
    K08semmosquito-C012.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 689 x.
    K08semmosquito-c010A.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 689 x.
    K08semmosquito-c010.jpg
  • Male mosquito head (family Culicidae).  The large bushy antenna is used to detect females. The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever. This is a scanning electron microscope image..The calibration bar is 100 um and the magnification is 41 x.
    K08semmosquito-c01.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 156 x.
    K08semmosquito-b03.jpg
  • Scanning electron microscopy (SEM) of a black fly eye (species Simulium ).  The yellow is yeast cells onthe eye, their function is unknown.  The magnification is 4,410x and the calibration bar is 1 um in length.
    K08SEM-blackflyeye001C.jpg
  • Scanning electron microscopy (SEM) of a black fly eye (species Simulium ).  The magnification is 4,410x and the calibration bar is 1 um in length.
    K08SEM-blackflyeye001B.jpg
  • An SEM image of a male mosquito (family Culicidae).  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 41 x..
    K08semmosquito-c05.jpg
  • Scanning electron microscopy (SEM) of a black fly eye (species Simulium ).  The magnification is 00x and the calibration bar is 100 um in length.
    K08SEM-blackflyB07.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3fullW.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3fullC.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3fullW2.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3fullB.jpg
  • Colored scanning electron micrograph (SEM) of the head of a bedbug (Cimex sp.). It has a compound eye (grey) on each side of its head. Antennae protrude on either side of its mouth. The stylet, a piercing mouthpiece (red, center,) is used to suck blood from warm-blood animals, including humans. Bedbugs are generally only active at night, hiding in crevices in walls and furniture and in bedding during the day. Although they do not transmit disease, their saliva can cause itchy swellings on the skin.
    K14SEM-bedbug3full.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal size eyes ? they are smaller than normal and are due to the ?eyeless mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07sem-fruitFLY2.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal bar shaped eyes ? they are smaller than normal and are due to the ?bar mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-bareye2.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal bar shaped eyes ? they are smaller than normal and are due to the ?bar mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly-bareye1.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal head parts due to the ?ant mutation?.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07sem-fruitfly4.jpg
  • SEM of a mutant fruit fly. Scanning Electron Micrograph (SEM) of the head of a mutant fruit fly (Drosophila melanogaster). This mutant has abnormal antena due to the ?ant? mutation.  Fruit flies are widely used in genetic experiments, particularly in mutation experiments, because they reproduce rapidly and their genetic systems are well understood.
    K07SEM-fruitfly3.jpg
  • Scanning electron microscopy (SEM) of a black fly  (species Simulium ).  The magnification is 118x and the calibration bar is 100 um in length.
    K08SEM-blackfly002.jpg
  • Jumping spider. Color enhanced scanning electron microscope  (SEM) image of  a jumping spider (Myrmarachne formicaria). Jumping spiders stalk their prey before leaping on it from a few centimeters away. Spiders of the Myrmarachne genus look very similar to, and mimic, ants. Four eyes are seen on its head. The large chelicerae (at lower center) are pincers that are used to tear up its food. Either side of these are the two palps, sensory structures for feeling and manipulation. This is a male spider which has larger fangs. Magnification: x34 when printed 10 cm wide.
    K14SEM-male-spiderA.jpg
  • Jumping spider. Color enhanced scanning electron microscope  (SEM) image of  a jumping spider (Myrmarachne formicaria). Jumping spiders stalk their prey before leaping on it from a few centimeters away. Spiders of the Myrmarachne genus look very similar to, and mimic, ants. Four eyes are seen on its head. The large chelicerae (at lower center) are pincers that are used to tear up its food. Either side of these are the two palps, sensory structures for feeling and manipulation. This is a male spider which has larger fangs. Magnification: x34 when printed 10 cm wide.
    K14SEM-male-spiderB.jpg
  • SEM of a Jumping Spider.  The field of view of this image is 4mm.
    K08SEMjumpspider001a.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae