Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 30 images found }

Loading ()...

  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5001.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks001A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42504A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5002.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks002A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42505A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5002.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks607C.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks003.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks008A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks004.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks607C.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks008A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks004.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks5001.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks010A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks003.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42505A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks010A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks002A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks606B.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks608E.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks608E.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks606B.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42503A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42502A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42502A.jpg
  • An electrical spark created when a sheet pf photographic film is placed between two high voltage electrodes. Initially, the film builds up a charge on the surface and acts like as a capacitor. At a certain potential voltage the film, which is a dielectric material, breaks down and allows electrons to flow. The flowing electrons superheat the air resulting in an electrical spark which is recorded in the film emulsion. These are often called Lichtenberg Figures after the German physicist Georg Christoph Lichtenberg, who originally discovered and studied them.
    K18sparks42503A.jpg
  • This image of an electrical discharge was made by placing a block of Lucite in the 6 megavolt (6Mv) electron beam of a linear accelerator. The Lucite gained a tremendous electrical charge when a grounded electrode was placed near it. The current flowing to ground melted the Lucite, leaving a record of the current flow. This fern-like fractal structure is quite common in electricity.
    lichtenberg_00035_RT8B.jpg
  • K18sparks002CUA.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae