Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 26 images found }

Loading ()...

  • Scanning electron microscope image of a water flea (Daphnia magna).  Daphnia is commonly found in fresh water. Water fleas are filter feeders that ingest algae, protozoan, or organic matter. This image was collected at a magnification of 2,180x...
    K09-semdaphnia119.jpg
  • Scanning electron microscope image of a water flea (Daphnia magna).  Daphnia is commonly found in fresh water. Water fleas are filter feeders that ingest algae, protozoan, or organic matter. This image represents a field of view of 2 mm and was collected at a magnification of 329x...
    K09-semdaphnia117.jpg
  • The water flea (Daphnia magna) is commonly found in fresh water. Water fleas are filter feeders that ingest algae, protozoan, or organic matter. The dark spots inside the animal are eggs. This image was created using the Rheinberg illumination technique.
    daphnia-B00039_8x10.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 200 um and the magnification is 243 x.
    K08semmosquito-C012.jpg
  • An SEM image of a male mosquito (family Culicidae).  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 41 x..
    K08semmosquito-c05.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 689 x.
    K08semmosquito-c010A.jpg
  • The anti-reflection structures on the surface of one eye element on the head of a female mosquito.  (family Culicidae).  These bump structures interact with the wave nature of light to increase the transmission of light into the eye by decreasing the reflected light.  Structures such as this are beginning to be incorporated into modern optical devices    This is a scanning electron microscope image.  The calibration bar is 1 um and the magnification is 9220 x.
    K08semmosquito-b10red.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 689 x.
    K08semmosquito-c010.jpg
  • Female mosquito eye (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 10 um and the magnification is 826x.
    K08semmosquito-b07red.jpg
  • Female mosquito eye (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 10 um and the magnification is 407 x.
    K08semmosquito-b06.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 156 x.
    K08semmosquito-b03.jpg
  • A light microscope image of the epidermal layer of a cactus (unidentified) showing  numerous calcium oxalate crystals.  Calcium oxalate crystals in plants are called raphides, in humans they can appear as kidney stones. These crystals help remove calcium build up in the tissues and make it undesirable for herbivore animals to eat the plant.Photo taken at 20x.
    K14-oxalatextal72.jpg
  • Hydroponic Chemicals dried and photographed under polarized light.  The magnification was 100x on a 35 mm sensor. Polarized light microscope image of flora-blend, a nutrient chemical used in the hydroponic growth of hydroponic plants
    K14-hydrop-73.jpg
  • Hydroponic Chemicals dried and photographed under polarized light.  The magnification was 100x on a 35 mm sensor. Polarized light microscope image of rapid-start, a nutrient chemical used in the hydroponic growth of plants.
    K14-hydrop-75.jpg
  • Light Microscope image of a transverse section through a cannabis (Cannabis sativa) plant stem. The root at this location is 6 mm in diameter.
    K17stem-near-root.jpg
  • A light microscope image of the epidermal layer of a cactus (unidentified) showing  numerous calcium oxalate crystals.  Calcium oxalate crystals in plants are called raphides, in humans they can appear as kidney stones. These crystals help remove calcium build up in the tissues and make it undesirable for herbivore animals to eat the plant.Photo taken at 40x.
    K14-oxalatextal71.jpg
  • A light microscope image of the tracheid cells in teh leaf of a sunflower showing the coil cell structure of the spiral lignin from the side.
    K14-LM-lignin68.jpg
  • Scanning electron microscope image of the mouth parts of a mosquito larva (family Culicidae).  The collection of hairs (light brown) are feeding structures used to filter water. The hairs beat through the water filtering out algae, bacteria and other micro-organisms that the larva feeds on.The calibration bar is 100 um and was take at a magnification of 1,440 x. ..
    K08semmosquito-larva023.jpg
  • Male mosquito head (family Culicidae).  The large bushy antenna is used to detect females. The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever. This is a scanning electron microscope image..The calibration bar is 100 um and the magnification is 41 x.
    K08semmosquito-c01.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 500 um wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath10blu2.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 2 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMBluebirdfeathres2-3B.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5B.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 500 um wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath10blu2.jpg
  • SEM of Eastern bluebird (Sialia sialis) feathers.  This image is 3 mm wide..These feathers have micro-structures that reflect blue light.  These microscopic features allow the bird to display bright blue iridescent colors.
    K08SEMbbfeath06-5B.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae