Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 87 images found }

Loading ()...

  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4005.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4001.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3991.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite (green) and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3988.jpg
  • willemite photographed in short wave uv light on the laft and white light on teh right - the two images are digitaly combined.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3998combo.jpg
  • willemite photographed in short wave uv light.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3998.jpg
  • Willemite photographed in lwhite light.  Calcite, willemite and franklinite (black) from New Jersey.  Part of a series of the specimen in different lights.
    K12-willemite3993.jpg
  • Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVroc3983.JPG
  • willemite photographed in long wave uv light.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under long-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3996.jpg
  • Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVroc8696.jpg
  • Calcite , willemite  and franklinite  from New Jersey, photographed in visible light.  Part of a series of the specimen in different lights.
    K12-UVroc3981.JPG
  • Calcite , willemite  and franklinite (black) from New Jersey, photographed under white light.  Part of a series of the specimen in different lights.
    K12-UVroc8694.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8709.jpg
  • Two different lights combind into one image.  The left part is UV light, while the right part is white light.  A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside87combo.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8715.jpg
  • Hackmanite is an important variety of sodalite exhibiting Florescence.  This specimen hackmanite is from Ontario Canada.  Photographed under white light.  Part of a series of the specimen in different lights.
    K12-UVHackmanite8703.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8712.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8716.jpg
  • Hackmanite is an important variety of sodalite exhibiting Florescence.  This specimen hackmanite is from Ontario Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVHackmanite8707.jpg
  • “Yooperlite” is the common name for syenite rich in fluorescent sodalite. These specimens of fluorescent sodalite were recently discovered Michigan.<br />
The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-UVIVF_5667.jpg
  • “Yooperlite” is the common name for syenite rich in fluorescent sodalite. These specimens of fluorescent sodalite were recently discovered Michigan. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_5669.jpg
  • Salt crystals (NaCl).  Large samples of rock salt showing the cubic cleavage structure.
    K12salt-crystals018.JPG
  • Salt crystals (NaCl).  Collected  in The Salton Sea, an inland saline lake in Southern California.  This sample shows the cubic structure of the salt crystals.
    K12salt-crystals039.JPG
  • Salt crystals (NaCl).  Large samples of rock salt showing the cubic cleavage structure.
    K12salt-crystals007.JPG
  • Salt crystals (NaCl).  Large samples of rock salt showing the cubic cleavage structure.
    K12salt-crystals033.JPG
  • Salt crystals (NaCl).  Large samples of rock salt showing the cubic cleavage structure.
    K12salt-crystals019.JPG
  • Salt crystals (NaCl).  Large samples of rock salt showing the cubic cleavage structure.
    K12salt-crystals014.JPG
  • Salt crystals (NaCl).  Large samples of rock salt showing the cubic cleavage structure.
    K12salt-crystals010.JPG
  • Salt crystals (NaCl).  Collected  in The Salton Sea, an inland saline lake in Southern California.  This sample shows the cubic structure of the salt crystals.
    K12salt-crystals044.JPG
  • An Sem image of blue cheese, the blue color and flavor of the cheese is due to the Penicillin fungus.  It is made from cow's milk using the mould Penicillin to produce the blue-green marbling. Cheese is a good source of calcium, but contains high levels of fat.  This is a false color scanning electron microscope image.   The image was collected at 1,000x magnification and the length bar at the bottom of the image is 20 um.
    K07SEMbluecheese5.jpg
  • An Sem image of blue cheese, the blue color and flavor of the cheese is due to the Penicillin fungus.  It is made from cow's milk using the mould Penicillin to produce the blue-green marbling. Cheese is a good source of calcium, but contains high levels of fat.  This is a false color scanning electron microscope image.   The image was collected at 1,000x magnification and the length bar at the bottom of the image is 20 um.
    K07SEMbluecheese1.jpg
  • Hornblende crystals, polarized light micrograph. This mineral contains calcium, sodium, magnesium, iron and aluminum in a silicate matrix. It is a member of the amphibole group of minerals, and it is found in igneous and metamorphic rocks. The area here is less than half a centimeter wide.
    K17-Hornblende01.jpg
  • .Faceted quartz crystals. Close-up of quartz or silicon dioxide (SiO2), one of the commonest minerals in the Earth's crust (12% by volume). The pure, colorless variety is also known as rock crystal and is used as a gemstone and highly prized by collectors. When it contains impurities, these impart a range of colors including white, yellow, pink, blue, green and smoky brown..
    K10quartz3623.JPG
  • .Faceted quartz crystals. Close-up of quartz or silicon dioxide (SiO2), one of the commonest minerals in the Earth's crust (12% by volume). The pure, colorless variety is also known as rock crystal and is used as a gemstone and highly prized by collectors. When it contains impurities, these impart a range of colors including white, yellow, pink, blue, green and smoky brown..
    K10quartz3624.JPG
  • Scanning electron micrograph (SEM) of asbestos fibers. Asbestos is a fibrous mineral form of impure magnesium silicate. It is often used in building materials, chemical filters, and electrical insulation. Inhalation of asbestos fibers may cause asbestosis or lung cancer.  Calibration bar in the image is 100 um and was taken at 1,000x
    K08asbestos027.jpg
  • Scanning electron micrograph (SEM) of asbestos fibers. Asbestos is a fibrous mineral form of impure magnesium silicate. It is often used in building materials, chemical filters, and electrical insulation. Inhalation of asbestos fibers may cause asbestosis or lung cancer.  Calibration bar in the image is 10 um and was taken at 4,140x
    K08asbestos029.jpg
  • Scanning electron micrograph (SEM) of asbestos fibers. Asbestos is a fibrous mineral form of impure magnesium silicate. It is often used in building materials, chemical filters, and electrical insulation. Inhalation of asbestos fibers may cause asbestosis or lung cancer.  Calibration bar in the image is 2 um and was taken at 20,000x
    K08asbestos031.jpg
  • Color-enhanced Scanning Electron Microscope (SEM) image of human tooth dentine (fracture surface) showing a crack in the surface. 70% of dentin consists of the mineral hydroxyapatite, 20% is organic material, and 10% is water. Magnification: x1200 when printed 10 cm wide.
    K14SEM--tooth062B.jpg
  • Magnetite. Magnetite, also known as lodestone, is a name given to either iron (III) oxide or iron (II) oxide. It is a naturally magnetic mineral. A sample of magnetite attracts an iron paper clip.
    K08magnetite0007.jpg
  • Color-enhanced Scanning Electron Microscope (SEM) image of human tooth dentine (fracture surface) showing a crack in the surface. 70% of dentin consists of the mineral hydroxyapatite, 20% is organic material, and 10% is water. Magnification: x1200 when printed 10 cm wide.
    K14SEM--tooth062.jpg
  • The quartz crystal optical wedge is a simple technique to aid in specimen identification by inducing a color gradient in a polarizing microscope. The wedge is made from a crystalline block of quartz cut into a wedge angle so that the optical axis of the quartz is oriented either parallel or perpendicular to the edge of the birefringent crystal. A typical quartz wedge is useful for measurements of petrographic specimens (rock and mineral thin sections) or other birefringent materials. The quartz wedge compensator is also employed for the determining the direction of anisotropy (crystalline fast and slow axes orientation) in birefringent specimens.
    K17pol-quartzwedge_4688.jpg
  • The quartz crystal optical wedge is a simple technique to aid in specimen identification by inducing a color gradient in a polarizing microscope. The wedge is made from a crystalline block of quartz cut into a wedge angle so that the optical axis of the quartz is oriented either parallel or perpendicular to the edge of the birefringent crystal. A typical quartz wedge is useful for measurements of petrographic specimens (rock and mineral thin sections) or other birefringent materials. The quartz wedge compensator is also employed for the determining the direction of anisotropy (crystalline fast and slow axes orientation) in birefringent specimens.
    K17-quartz-wedge4692.jpg
  • Color-enhanced Scanning Electron Microscope (SEM) image of human tooth dentine (fracture surface). 70% of dentin consists of the mineral hydroxyapatite, 20% is organic material, and 10% is water. Magnification: x2800 when printed 10 cm wide.
    K14SEM-parkers-tooth1.jpg
  • Color-enhanced Scanning Electron Microscope (SEM) image of human tooth dentine (fracture surface). 70% of dentin consists of the mineral hydroxyapatite, 20% is organic material, and 10% is water. Magnification: x208 when printed 10 cm wide.
    K14SEM-tooth066B.jpg
  • Asbestos, with fibers visible.
    K12-asbestos-rock224.jpg
  • Agate is a micro crystalline variety of silica, chiefly chalcedony, characterized by its fineness of grain and brightness of color. This particular agate came from the shores of Lake Superior in Michigan. Specimen Dimension: approximately 4 cm.
    K12-Sup-agate4232.jpg
  • Agate is a micro crystalline variety of silica, chiefly chalcedony, characterized by its fineness of grain and brightness of color. This particular agate came from the shores of Lake Superior in Michigan. Specimen Dimension: approximately 4 cm.
    K12-Sup-agate4210.jpg
  • Rock Candy, also called rock sugar.  A string is suspended in a super saturated solution of sugar.  The sugar crystals will form on nucleation sites along the string.  This sample took three weeks to grow.
    K12-rockcandy9824.JPG
  • Rock Candy, also called rock sugar.  A string is suspended in a super saturated solution of sugar.  The sugar crystals will form on nucleation sites along the string.  This sample took three weeks to grow.
    K12-rockcandy9829.JPG
  • Rock Candy, also called rock sugar.  A string is suspended in a super saturated solution of sugar.  The sugar crystals will form on nucleation sites along the string.  This sample took three weeks to grow.
    K12-rockcandy9825.JPG
  • Rock Candy, also called rock sugar.  A string is suspended in a super saturated solution of sugar.  The sugar crystals will form on nucleation sites along the string.  This sample took three weeks to grow.
    K12-rockcandy9823.JPG
  • False color scanning electron microscope image of an uncut synthetic diamond. Diamond is one of the crystal forms of pure carbon and is element 6 on the periodic table. Diamond is the hardest material known to science. This specimen is .5 mm in width.
    K18-diamond032C.jpg
  • False color scanning electron microscope image of an uncut synthetic diamond. Diamond is one of the crystal forms of pure carbon and is element 6 on the periodic table. Diamond is the hardest material known to science. This specimen is .5 mm in width.
    K18-diamond032D.jpg
  • Color-enhanced Scanning Electron Microscope  (SEM) of volcanic ash (volcanic glass; pumice) from Mount St. Helens in Washington State. Collected on May 18, 1980  Magnification is x450 when printed 10 cm wide.
    K14SEM-volcanic-ash026B.jpg
  • Gypsum. Polarized light micrograph of a thin section of gypsum. Gypsum is a chemical sedimentary rock, composed mainly of hydrated calcium sulphate. It may grow as a crystal aggregate (as here) or in giant tabular crystals up to 1 meter in length. Gypsum is used in plaster of Paris, in Portland cement and as a flux in pottery. The most compact form of gypsum is known as alabaster. Sample collected in Penfield, New York.  Object size: 40 mm.
    K17pol-gypsum_4700.jpg
  • Polarized light micrograph of a thin section of mica schist, a type of metamorphic rock.  Object size: 60 mm.
    K17MICA_4674.jpg
  • Color-enhanced Scanning Electron Microscope  (SEM) of volcanic ash (volcanic glass; pumice) from Mount St. Helens in Washington State. Collected on May 18, 1980  Magnification is x450 when printed 10 cm wide.
    K14SEM-volcanic-ash026.jpg
  • A sample of Uranium ore conglomerate from Ontario Canada.  This image was created by placing the slice of radioactive conglomerate on a sheet of sensitive x-ray film for four days.  The darkest spots represent the highest sources of radiation.  The radiation is gamma, beta, and gamma..Uranium ore is also called pitchblende.  Pitchblende is a form of the uranium ore (uranium oxide).  This highly radioactive black ore is made up of uranium (U) and oxygen (O) in the chemical formula U3O8. As an uranium source it is important for the nuclear industry. .This is part of a series.  The other images in the series show the rock sample in optical light.
    Uo2-rock-radiation-B-aligned.jpg
  • An unidentified section of fossilized (agatized) dinosaur bone. The cavities in the bone have filled with quartz. Specimen collected in Wyoming USA. 5x macro lens.
    Kinsman-dino-bone.jpg
  • Gypsum. Polarized light micrograph of a thin section of gypsum. Gypsum is a chemical sedimentary rock, composed mainly of hydrated calcium sulphate. It may grow as a crystal aggregate (as here) or in giant tabular crystals up to 1 meter in length. Gypsum is used in plaster of Paris, in Portland cement and as a flux in pottery. The most compact form of gypsum is known as alabaster. Sample collected in Penfield, New York.  Object size: 40 mm.
    K17pol-gypsum_4697.jpg
  • Color-enhanced Scanning Electron Microscope  (SEM) of volcanic ash (volcanic glass; pumice) from Mount St. Helens in Washington State. Collected on May 18, 1980  Magnification is x1200 when printed 10 cm wide.
    K14SEM-volcanic-ash014B.jpg
  • Color-enhanced Scanning Electron Microscope (SEM) image of a cracked childs tooth with Cheek Cells. Magnification: x1400 when printed 10 cm wide.
    K14SEM-toothcrackpan1.jpg
  • Color-enhanced Scanning Electron Microscope  (SEM) of volcanic ash (volcanic glass; pumice) from Mount St. Helens in Washington State. Collected on May 18, 1980  Magnification is x1200 when printed 10 cm wide.
    K14SEM-volcanic-ash014.jpg
  • Libyan Desert Glass (sometimes referred to as Egypt or Egyptian Desert Glass) is a rare impact glass, similar to a tektite.  This specimen was found near the Libyan/Egyptian border. It is associated with an ancient meteorite impact, which occurred somewhere in the North African deserts. This specimen is translucent.  The collection of this  Desert Glass is now  prohibited by the Egyptian government.  Recent discoveries show that samples of desert glass were used in the Tutankhamun head dress.
    K12-desertglass221.jpg
  • A sample of Uranium ore conglomerate from Ontario Canada.  This image was created by placing the slice of radioactive conglomerate on a sheet of sensitive x-ray film for four days.  The brightest spots represent the highest sources of radiation.  False color was applied to the black and white image. The radiation is gamma, beta, and gamma..Uranium ore is also called pitchblende.  Pitchblende is a form of the uranium ore (uranium oxide).  This highly radioactive black ore is made up of uranium (U) and oxygen (O) in the chemical formula U3O8. As an uranium source it is important for the nuclear industry. .This is part of a series.  The other images in the series show the rock sample in optical light.
    Uo2-rock-radiation-A.jpg
  • A sample of Uranium ore conglomerate from Ontario Canada..The uranium is the dark material between the large quartz pebbles..Uranium ore is also called pitchblende.  Pitchblende is a form of the uranium ore (uranium oxide).  This highly radioactive black ore is made up of uranium (U) and oxygen (O) in the chemical formula U3O8. As an uranium source it is important for the nuclear industry. .This is part of a series.  The other images in the series show the radiation from this specimen.
    Uo2-rock-optical.jpg
  • Libyan Desert Glass (sometimes referred to as Egypt or Egyptian Desert Glass) is a rare impact glass, similar to a tektite.  This specimen was found near the Libyan/Egyptian border. It is associated with an ancient meteorite impact, which occurred somewhere in the North African deserts. This specimen is translucent.  The collection of this  Desert Glass is now  prohibited by the Egyptian government.  Recent discoveries show that samples of desert glass were used in the Tutankhamun head dress.
    K12-desertglass222.jpg
  • False color scanning electron microscope image of an uncut synthetic diamond. Diamond is one of the crystal forms of pure carbon and is element 6 on the periodic table. Diamond is the hardest material known to science. This specimen is .5 mm in width.
    K18-diamond032A.jpg
  • Gypsum. Polarized light micrograph of a thin section of gypsum. Gypsum is a chemical sedimentary rock, composed mainly of hydrated calcium sulphate. It may grow as a crystal aggregate (as here) or in giant tabular crystals up to 1 meter in length. Gypsum is used in plaster of Paris, in Portland cement and as a flux in pottery. The most compact form of gypsum is known as alabaster. Sample collected in Penfield, New York.  Object size: 40 mm.
    K17pol-gypsum_4704.jpg
  • Color-enhanced Scanning Electron Microscope  (SEM) of volcanic ash (volcanic glass; pumice) from Mount St. Helens in Washington State. Collected on May 18, 1980  Magnification is x2300 when printed 10 cm wide.
    K14SEM-volcanic-ash034.jpg
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-1.tif
  • Volcanic ash. Colored scanning electron micrograph (SEM) of ash from Alaska, USA. Volcanic ash consists of rock, minerals and volcanic glass fragments. It is created during explosive eruptions by the shattering of large rocks and the separation of molten rock into tiny pieces. Magnification: 10,670x and the image is 10um wide
    K12SEM-volcanic-ash04.jpg
  • Volcanic ash. Colored scanning electron micrograph (SEM) of ash from Alaska, USA. Volcanic ash consists of rock, minerals and volcanic glass fragments. It is created during explosive eruptions by the shattering of large rocks and the separation of molten rock into tiny pieces. Magnification: 5,050x and the image is 15um wide
    K12SEM-volcanic-ash01.jpg
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 25 times when printed 10 inches wide.
    K07sweet-flag.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-11.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-10.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-4.tif
  • Fig Stem (Ficus sp.)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The magnification is 32 times when printed 10 inches wide.
    K07fig.tif
  • Light micrograph of a section through a bamboo stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The magnification is 32 times when printed 10 inches wide.
    K07bamboo.tif
  • X-ray of Pacific Mistletoe (Phoradendron villosum) collected in California, USA Mistletoe is a partial parasite. It bears evergreen leaves that carry out some photosynthesis of their own, while it relies on the host plant mainly for mineral nutrients from the ground.
    K14X-mistlletoe-1C.jpg
  • Colored-enhanced scanning electron micrograph (SEM) of a section through a xylem vessel in a cannabis stem. The xylem transports water and mineral nutrients from the roots throughout the plant. The walls of the xylem vessels are strengthened with lignin  loops, a woody substance that helps to support the plant. Magnification: x2200 when printed at 10 centimeters wide.
    K13SEM-canna67.jpg
  • Marble ws heated in a lime kiln to convert teh mineral to lime.  This is the material used in a limelight lamp.  Limelight also known as calcium light is a type of stage lighting once used in theaters.  A bright light is created when a sample of quicklime (calcium oxide). The light is produced by  incandescence.  The historic use of the light still services as someone in the public eye is still said to be ?in the limelight.? .Lime is produced by heating calcium carbonate until the extra carbon and oxygen atoms are driven off leaving just the calcium oxide.  This process is very easy and takes place in a lime kiln. Lime can be made from sea shells, chalk, and many types of rock - including marble.
    K12lime-marble026.JPG
  • Marble ws heated in a lime kiln to convert teh mineral to lime.  This is the material used in a limelight lamp.  Limelight also known as calcium light is a type of stage lighting once used in theaters.  A bright light is created when a sample of quicklime (calcium oxide). The light is produced by  incandescence.  The historic use of the light still services as someone in the public eye is still said to be ?in the limelight.? .Lime is produced by heating calcium carbonate until the extra carbon and oxygen atoms are driven off leaving just the calcium oxide.  This process is very easy and takes place in a lime kiln. Lime can be made from sea shells, chalk, and many types of rock - including marble.
    K12lime-marble051.JPG
  • Colored-enhanced scanning electron micrograph (SEM) of a section through a xylem vessel in a cannabis stem. The xylem transports water and mineral nutrients from the roots throughout the plant. The walls of the xylem vessels are strengthened with lignin  loops, a woody substance that helps to support the plant. Magnification: x1200 when printed at 10 centimeters wide.
    K13SEM-canna66.jpg
  • X-ray of Pacific Mistletoe (Phoradendron villosum) collected in California, USA Mistletoe is a partial parasite. It bears evergreen leaves that carry out some photosynthesis of their own, while it relies on the host plant mainly for mineral nutrients from the ground.
    K14X-mistlletoe-1.jpg
  • Marble ws heated in a lime kiln to convert teh mineral to lime.  This is the material used in a limelight lamp.  Limelight also known as calcium light is a type of stage lighting once used in theaters.  A bright light is created when a sample of quicklime (calcium oxide). The light is produced by  incandescence.  The historic use of the light still services as someone in the public eye is still said to be ?in the limelight.? .Lime is produced by heating calcium carbonate until the extra carbon and oxygen atoms are driven off leaving just the calcium oxide.  This process is very easy and takes place in a lime kiln. Lime can be made from sea shells, chalk, and many types of rock - including marble.
    K12lime-marble050.JPG
  • X-ray of Pacific Mistletoe (Phoradendron villosum) collected in California, USA Mistletoe is a partial parasite. It bears evergreen leaves that carry out some photosynthesis of their own, while it relies on the host plant mainly for mineral nutrients from the ground.
    K14X-mistlletoe-1B.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae