Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 35 images found }

Loading ()...

  • A pin is dropped and photographed with stroboscopic motion. In this photograph the strobe is flashing 3200 times a min.
    pin_00147_RT8.jpg
  • Feet walking.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    walker8472.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0449.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0427.jpg
  • A fan in motion. The blades move so tast that they turn into a blur. There is no safety cover on this fan.
    K17-fan-nocover-still_4735.jpg
  • A drummer shows off his drum moves.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    drummer8431.jpg
  • A dancers performing modern dance.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    dance8599.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8263.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207blue.jpg
  • .This is a demonstration of a ball rolling down an incline and making the loop-the-loop path.  The velocity required to make the loop is called the critical velocity.   The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-loop8115red.jpg
  • .This is a demonstration of a ball rolling down an incline. The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-lAccel8115red.jpg
  • .This is a demonstration of a ball rolling down an incline. The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-lAccel8115blue.jpg
  • A black belt karate expert performs a punch. A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    karate8314.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/20,000th of a second.  In all collisions momentum is conserved. .
    K07-golfb0167.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/1,000,000th of a second.  In all collisions momentum is conserved. .
    K07-golfb0152.jpg
  • Two dancers performing modern dance.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    Dance8589.jpg
  • A drip of water splashes as it hits a shallow dish of water.  The action is frozen in time with a high-speed flash with a duration of 1/20,000th of a second.  The impact of the water droplet creates a unique crown shaped splash.
    070227drip0319.jpg
  • A fan in motion. The blades move so tast that they turn into a blur.
    K17-fan-motion_4740.jpg
  • This is a demonstration of a ball rolling down an incline, slowing down, and then speeding back to where it started.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8298.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207.jpg
  • .This is a demonstration of a ball rolling down an incline and almost making the loop-the-loop path.  The ball does not have enough velocity to make the loop.  The velocity required to make the loop is called the critical velocity, and this show a situation where the ball leaves the surface of the track, or the normal force from the track on the ball is zero.  The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a sub critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-looploop8096white.jpg
  • .This is a demonstration of a ball rolling down an incline and making the loop-the-loop path.  The velocity required to make the loop is called the critical velocity.   The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-full-loop8115white.jpg
  • A digital streak image of a bouquet of flowers. This type of image is used to test the stability of digital time-lapse camera systems as well as collect image data around a circular object.  In this case the camera is tilted with respect to the rotation and a colorful twist of colors is the wonderful result.
    K09s2A-074.jpg
  • Smoke patterns. Smoke forming vortices (swirling patterns) in the air. This smoke is from a joss stick, a stick of incense that is burned to produce a fragrant smell.
    smokeIMG_4434.jpg
  • A black belt karate expert performs a kick. A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    karate8329.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/1,000,000th of a second.  In all collisions momentum is conserved.   This ball is a soft driving ball - not a regulation play ball..
    K07-golfb0147.jpg
  • A boy juggles three balls.  The motion is recorded by a special stroboscopic camera.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    juggle8288.jpg
  • A dancer performing modern dance.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    dance8612.jpg
  • April Laragy, the lead singer of The Atomic Swindlers shows off her guitar moves.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    April8337.jpg
  • .This is a demonstration of a ball rolling down an incline and almost making the loop-the-loop path.  The ball does not have enough velocity to make the loop.  The velocity required to make the loop is called the critical velocity, and this show a situation where the ball leaves the surface of the track, or the normal force from the track on the ball is zero.  The analysis of this demo requires the use of the centripetal force, kinetic energy, potential energy, rolling energy, and friction.  This is also an example of a sub critical velocity.  The loop is 19.5 cm in diameter and the ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time. .
    K12-looploop8096.jpg
  • A Northern Leopard Frog (Rana pipiens) jumps into water. This species escapes predators by seeking the safety of water.
    IMG_1584-crop.jpg
  • A Weightlifter.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    weightlifter8496.jpg
  • Feet walking.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    walking8462.jpg
  • A boy juggles three balls.  The motion is recorded by a special stroboscopic camera.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    juggle_8268.jpg
  • This is a demonstration of a ball rolling up an incline, slowing down, and then speeding up as it rolls down the opposite side.  The ball is rolling from left to right in this image.  The analysis of this demo requires the use of the  kinetic energy, potential energy, rolling energy, and friction.   The  ball is 2.5 cm in diameter. The flash illuminates the scene at 40 hz showing images every  .025 seconds of time.
    K12-coaster8207red.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae