Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 26 images found }

Loading ()...

  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/1,000,000th of a second.  In all collisions momentum is conserved. .
    K07-golfb0152.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/20,000th of a second.  In all collisions momentum is conserved. .
    K07-golfb0167.jpg
  • A golf club moving at 97 miles per hour (43.36 m/s) hits a stationary golf ball.  The action is recorded by a fast strobe with a duration of 1/1,000,000th of a second.  In all collisions momentum is conserved.   This ball is a soft driving ball - not a regulation play ball..
    K07-golfb0147.jpg
  • A ball bounces on a spring.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    spring8081.jpg
  • A black belt karate expert brakes a wooden board with his bare hand..The image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second. .
    karate_9324.jpg
  • A black belt karate expert brakes a wooden board with his bare hand.  The image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second. ..
    karate_9535sm.jpg
  • A Tennis Ball hitting a Racket .  Note the deformation of both the tennis ball and the tennis racket.  The ball has a velocity of approximately 20 meters per second in this image.  This image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second.
    tennis8527.jpg
  • A Tennis Ball hitting a Racket .  Note the deformation of both the tennis ball and the tennis racket.  The ball has a velocity of approximately 20 meters per second in this image.  This image was photographed using high speed flash to freeze the motion taking place in 1/15,000th of a second.
    tennis8526.jpg
  • A stroboscopic image of a hammer striking a nail into wood.
    K09hammer4266.jpg
  • A paintball is fired into an egg.
    K09paintball4710.jpg
  • A paintball is fired into an egg.
    K09paintball4707.jpg
  • A paintball is fired directly at the vertical edge of a razor blade.
    K09paintball4694.jpg
  • A paintball is fired directly at the vertical edge of a razor blade.
    K09paintball4678.jpg
  • A paintball is fired into an egg.
    K09paintball4713.jpg
  • A paintball is fired directly at the vertical edge of a razor blade.
    K09paintball4684.jpg
  • A paintball is fired directly at the vertical edge of a razor blade.
    K09paintball4673.jpg
  • A stroboscopic image of a hammer striking a nail into wood.
    K09hammer4403.jpg
  • A paintball is fired directly at the vertical edge of a razor blade.
    K09paintball4661.jpg
  • A stroboscopic image of a hammer striking a nail into wood.
    K09hammer4388.jpg
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell006.JPG
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell005.JPG
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell009.JPG
  • A simulation of gravity showing curved space-time.  The ball represents the sun and is resting on a sheet of plastic that stretches under its weight.  The curved sheet of plastic is a way to visualize the way a gravity curves space.
    K11-gravitywell003.JPG
  • The motion of a planets orbit around a star is simulated by rolling a ball on a curved surface of plastic..
    K11-gravitywell007.JPG
  • An apple and a feather are released at the same time.  The feather that is falling in a vacuum chamber falls at the same rate as the apple in the air.  The feather and the apple have metal pins in them that are attracted to the strong magnets in the release mechanism that can be seen at the top of the image.  The flash is triggered at 1/20th of a second interval.  The apple and feather do accelerate at the same rate..The vacuum pressure was 30 microns.
    K12-gravity-apple004.JPG
  • An apple and a feather are released at the same time.  The feather that is falling in a vacuum chamber falls at the same rate as the apple in the air.  The feather and the apple have metal pins in them that are attracted to the strong magnets in the release mechanism that can be seen at the top of the image.  The flash is triggered at 1/20th of a second interval.  The apple and feather do accelerate at the same rate..The vacuum pressure was 30 microns.
    K12-gravity-apple001.JPG
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae