Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 238 images found }

Loading ()...

  • The quartz crystal optical wedge is a simple technique to aid in specimen identification by inducing a color gradient in a polarizing microscope. The wedge is made from a crystalline block of quartz cut into a wedge angle so that the optical axis of the quartz is oriented either parallel or perpendicular to the edge of the birefringent crystal. A typical quartz wedge is useful for measurements of petrographic specimens (rock and mineral thin sections) or other birefringent materials. The quartz wedge compensator is also employed for the determining the direction of anisotropy (crystalline fast and slow axes orientation) in birefringent specimens.
    K17pol-quartzwedge_4688.jpg
  • The quartz crystal optical wedge is a simple technique to aid in specimen identification by inducing a color gradient in a polarizing microscope. The wedge is made from a crystalline block of quartz cut into a wedge angle so that the optical axis of the quartz is oriented either parallel or perpendicular to the edge of the birefringent crystal. A typical quartz wedge is useful for measurements of petrographic specimens (rock and mineral thin sections) or other birefringent materials. The quartz wedge compensator is also employed for the determining the direction of anisotropy (crystalline fast and slow axes orientation) in birefringent specimens.
    K17-quartz-wedge4692.jpg
  • The optical computer mouse is on the left, while the old style ball tracking mouse is on the right.
    comp-miceblue.jpg
  • SEM image with false color of the reflective ink on a new 100 dollar bill.  This image shows the the special highly reflective optical ink used on the large 100 pattern and on the liberty bell. This ink can not be duplicated with a digital printer. This image is part of a series showing the new security features of the United States 100 dollar bill. These anti-counterfeit features include micro-print, watermarks, lenticular images, special inks, fluorescent fibers and strips, colored fibers, and the use of full colored inks. This image is x150 magnification when printed 10 cm wide.
    K14SEM140611new100bill_0095.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3409.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0179.jpg
  • A medical bandage is pulled apart so that the adhesive can show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowbandage0224.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0205.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3410.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0183.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0182.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16bullet-sugarcubes0202.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0218.jpg
  • Tape is pulled from a glass surface to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0215.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3485.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3400.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0180.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16pellet-sugarcubes0201B.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0175.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-film-3153.jpg
  • A candy is hit with a hammer to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver-0194.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver0174.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0176.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0204.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0206.jpg
  • A spinning golf ball is flow tested in a two dimensional fluid flow. The colors relate to different pressures in the fluid. In this case the low-pressure area created by the Magnus effect contributes to the flight of the golf ball by creating lift. The rotating golf ball lift allows the ball to travel further. A high-speed flash at 1/15,000th of a second captures the action.
    golfball-hickory.jpg
  • A spinning golf ball is flow tested in a two dimensional fluid flow. The colors relate to different pressures in the fluid. In this case the low-pressure area created by the Magnus effect contributes to the flight of the golf ball by creating lift. The rotating golf ball lift allows the ball to travel further. A high-speed flash at 1/15,000th of a second captures the action.
    newgolf0055.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1079.jpg
  • An X-ray of a light meter
    light-meter1blueneg.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schflame-B_1074.jpg
  • A schlieren image of a Hair Dryer.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1371.jpg
  • A schlieren image of a glass of wine.  The wine vapor and smell of the wine contains alchol that becomes visible in a schlieren system.  The schlieren image identifies areas of different index of refractions.  In this case the alcohol in air becomes visible.
    K07Sch1123.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1045.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1032black.jpg
  • A Schlieren image of a carbon dioxide gas leaving a high preasure tank.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07SchCo2-tank_1252.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1025.jpg
  • A schlieren image of a a man breathing through his mouth.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0285.jpg
  • A schlieren image of compressed air.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schl0143.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Schballoon-pop_1235.jpg
  • A schlieren image of the aroma rising from a rose.  To increase the visualization of air flow around the rose, and show how smells are transported in the air - the rose was misted with pure alcohol.   The schlieren image identifies areas of different index of refraction.
    K07Sch1432.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1346.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1083.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1063.jpg
  • A schlieren image of a man drinking hot coffee .  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1028.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0869.jpg
  • A schlieren image of a sparkler.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0844.jpg
  • A schlieren image of a a man breathing through his nose.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0282.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0194.jpg
  • A schlieren image of a gas handheld lighter being ignited.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0155.jpg
  • A schlieren image of a girl smelling a rose.  To increase the visualization of air flow around the rose, and show how smells are transported in the air - the rose was misted with pure alcohol.   The schlieren image identifies areas of different index of refraction.
    K07Sch1433.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1327.jpg
  • A schlieren image of a man drinking hot coffee.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1020.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1014.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0882.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Sch-pop1234.jpg
  • A microscopic view of an inkjet printer head.  The circular hole is the ink nozzle and the flow is often controlled with electrostatics.  The magnification is 200x on the 35 mm camera.
    K09printerhead046.jpg
  • The atomic emission spectra of mercury gas. <br />
Mercury vapor emission spectroscopy. Emission spectroscopy examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state.
    K18-Mercury-Spectra.jpg
  • Transverse section of Stinking Hellebore (Helleborus foetidus).  A poisonous plant.  Light micrograph of a section through a stem.  The magnification is 200 times when printed 10 inches wide.
    K07Stinking200x03.tif
  • Transverse section of a King Solomon's-seal (Polygonatum muliiflorum) stem. Polygonatum (King Solomon's-seal, Solomon's Seal) is a genus of about 50 species of flowering plants within the family Ruscaceae, formerly classified in the lily family Liliaceae.  Light micrograph of a section through a  stem.  The magnification is 200 times when printed 10 inches wide.
    K07KingSolomon200x05.tif
  • Transverse section of Stinking Hellebore (Helleborus foetidus).  A poisonous plant.  Light micrograph of a section through a stem.  The magnification is 200 times when printed 10 inches wide.
    K07Stinking200x02.tif
  • Transverse section stem of Ivy (Hedera) a dicotyledon.  Light micrograph of a section through an ivy stem.  The magnification is 600 times when printed 10 inches wide.
    K07ivy-stem600x5.tif
  • The atomic emission spectra of Hydrogen gas. <br />
Hydrogen vapor emission spectroscopy. Emission spectroscopy examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state.
    K18-HYDROGEN-Spectra.jpg
  • Transverse section of a Tamarisk stem (Tamarix tetrandra) .  micrograph of a section through a  stem.  The magnification is 200 times when printed 10 inches wide.
    K07Tamarisk200x04.tif
  • Transverse section of a Tamarisk stem (Tamarix tetrandra) .  micrograph of a section through a  stem.  The magnification is 200 times when printed 10 inches wide.
    K07Tamarisk200x02.tif
  • Transverse section of a Tamarisk stem (Tamarix tetrandra) .  micrograph of a section through a  stem.  The magnification is 32 times when printed 10 inches wide.
    K07Tamarisk32x.tif
  • Transverse section of Stinking Hellebore (Helleborus foetidus).  A poisonous plant.  Light micrograph of a section through a stem.  The magnification is 32 times when printed 10 inches wide.
    K07Stinking32x.tif
  • Transverse section stem of an oak tree (Quercus robur).  Light micrograph of a section through a stem.  The magnification is 200 times when printed 10 inches wide.
    K07oak200x02.tif
  • Transverse section of a honeysuckle stem. Honeysuckle (Lonicera periclymenum), known as Common Honeysuckle, European Honeysuckle or woodbine.Light micrograph of a section through a  stem.  The magnification is 32 times when printed 10 inches wide.
    K07honeysuckle32x.tif
  • Transverse section of a  Datura Stem (Datura stramonium).  Light micrograph of a section through a stem.  The magnification is 32 times when printed 10 inches wide.  Datura is also known by the common names Jimson Weed, Gypsum Weed, Stink Weed, Loco Weed, Jamestown Weed, Thorn Apple, Angel's Trumpet, Devil's Trumpet, Devil's Snare is a common weed in the Nightshade Family. It contains tropane alkaloids that are sometimes used as a hallucinogen.
    K07datura32X.tif
  • Butchers Broom (box holly) Ruscus aculeatus. Butcher's broom is an aromatic, diuretic, mildly laxative herb that reduces inflammation and constricts the veins.  The plant is considered a medicinal herb since medieval times.  Magnifation is 32 times when printed 10 inches wide.
    K07butchers-broom.tif
  • A microscopic view of an inkjet printer head.  The circular hole is the ink nozzle and the flow is often controlled with electrostatics.  The magnification is 100x on the 35 mm camera.  There is a dropplet of red ink on the head.
    K09printerhead0016.jpg
  • The atomic emission spectra of Helium gas. <br />
Helium vapor emission spectroscopy. Emission spectroscopy examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state.
    K18-Helium-Spectra.jpg
  • Transverse section of an Umbrella Pine Stem (Sciadopitys verticillata) .  Light micrograph of a section through a  stem.  The Umbrella Pine is also called Koyamaki (Sciadopitys verticillata) or Japanese Umbrella-pine, is a unique conifer endemic to Japan. It is the sole member of the family Sciadopityaceae and genus Sciadopitys, a living fossil with no close relatives, and known in the fossil record for about 230 million years. The magnification is 32 times when printed 10 inches wide.
    K07umbrellapine32x.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-11.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-10.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-1.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 25 times when printed 10 inches wide.
    K07sweet-flag.tif
  • Transverse section of a Acacia dealbata (Silver Wattle) stem. Silver Wattle is a species of Acacia, native to southeastern Australia.  It is a fast growing evergreen tree or shrub growing up to 30 m tall, typically a pioneer species after fire.  Acacia dealbata is widely cultivated as an ornamental plant.  Light micrograph of a section through a stem.  The magnification is 200 times when printed 10 inches wide.
    K07SilverWattle200x06.tif
  • Transverse section stem of a Raspberry Stem (Rubus strigosus).  Light micrograph of a section through a stem.  Also called the American Red Raspberry or American Raspberry.  The magnification is 200 times when printed 10 inches wide.
    K07raspberry200x20.tif
  • Transverse section of a King Solomon's-seal (Polygonatum muliiflorum) stem. Polygonatum (King Solomon's-seal, Solomon's Seal) is a genus of about 50 species of flowering plants within the family Ruscaceae, formerly classified in the lily family Liliaceae.  Light micrograph of a section through a  stem.  The magnification is 32 times when printed 10 inches wide.
    K07KingSolomon32x.tif
  • Transverse section stem of Ivy (Hedera) a dicotyledon.  Light micrograph of a section through an ivy stem.  The magnification is 200 times when printed 10 inches wide.
    K07ivy-stem200x-9.tif
  • Fig Stem (Ficus sp.)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The magnification is 32 times when printed 10 inches wide.
    K07fig.tif
  • Transverse section of a Cow Parsley stem. Cow Parsley (Anthriscus sylvestris)also known as Wild Chervil, Wild Beaked Parsley, and Keck.  It is a herbaceous biennial or short-lived perennial. It is native to Europe.  Light micrograph of a section through a  stem.  The magnification is 32 times when printed 10 inches wide.
    K07CowParsley32x.tif
  • Butchers Broom (box holly) Ruscus aculeatus. Butcher's broom is an aromatic, diuretic, mildly laxative herb that reduces inflammation and constricts the veins.  The plant is considered a medicinal herb since medieval times.  Magnifation is 200 times when printed 10 inches wide.
    K07butchers-broom200x1.tif
  • Light micrograph of a section through a bamboo stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The magnification is 32 times when printed 10 inches wide.
    K07bamboo.tif
  • Sweet Flag Stem (Acorus calamus)  Light micrograph of a section through a fig tree stem. The large holes are cross-sections of xylem, vascular tissue used to transport water and minerals from the roots.  The rootstock of this aromatic plant are used as a natural insecticide and an ingredient of perfumes. The roots  were used for various medicinal purposes, and reportedly induce hallucinations if eaten in sufficiently large quantities. In modern times the active chemical in the plant have been identified as Beta-asarone,  a carcinogen.  The Food & Drug Administration (FDA) has banned the use of the sweet flag as a food additive. The magnification is 200 times when printed 10 inches wide.
    K07sweet-flag200x-4.tif
  • Transverse section of Stinking Hellebore (Helleborus foetidus).  A poisonous plant.  Light micrograph of a section through a stem.  The magnification is 200 times when printed 10 inches wide.
    K07Stinking200x04.tif
  • Transverse section of Hogweed Stem (Heracleum mantegazzianum).  Light micrograph of a section through a stem. Hogweed is a very invasive plant.  The magnification is 200 times when printed 10 inches wide.
    K07hogweed200x01.tif
  • The atomic emission spectra of Neon gas. <br />
Neon  vapor emission spectroscopy. Emission spectroscopy examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state.
    K18-Neon-Spectra.jpg
  • Transverse section of a Black Bryony stem.  Light micrograph of a section through the stem.  Black Bryony (Tamus communis) is a flowering plant, in the yam family Dioscoreaceae, native to Europe, northwest Africa and Asia.  This plant is poisonous.  It is a climbing herbaceous plant growing to 2-4 m tall, with twining stems. The magnification is 32 times when printed 10 inches wide.
    K07Tamus-communis32x.tif
  • Transverse section stem of a Raspberry Stem (Rubus strigosus).  Light micrograph of a section through a stem.  Also called the American Red Raspberry or American Raspberry.  The magnification is 32 times when printed 10 inches wide.
    K07raspberry32x.tif
  • Butchers Broom (box holly) Ruscus aculeatus. Butcher's broom is an aromatic, diuretic, mildly laxative herb that reduces inflammation and constricts the veins.  The plant is considered a medicinal herb since medieval times.  The magnification is 200 times when printed 10 inches wide.
    K07butchers-broom200x2.tif
  • A Synthetic quarts crystal that is lab grown.  This crystal will be cut into sections that will be manufactured into optical components and electrical quartz crystal oscillators. Quartz creates an electrical signal with a very precise frequency that is used to provide a stable clock signal to the rest of the circuit.
    K14synthetic-quarts2613.jpg
  • A candy is hit with a hammer to show the property of triboluminescence.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K09candyrB1.jpg
  • A candy is hit with a hammer to show the property of triboluminescence.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K09candyrA.jpg
  • An X-Ray of a modern auto-focus lens.  The different optical elements can be seen, as well as the auto-focus motor and related electronics.
    moden-lensblue.jpg
  • The anti-reflection structures on the surface of one eye element on the head of a female mosquito.  (family Culicidae).  These bump structures interact with the wave nature of light to increase the transmission of light into the eye by decreasing the reflected light.  Structures such as this are beginning to be incorporated into modern optical devices    This is a scanning electron microscope image.  The calibration bar is 1 um and the magnification is 9220 x.
    K08semmosquito-b10red.jpg
  • A candy is hit with a hammer to show the property of triboluminescence.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K09candyrB1-small.jpg
  • X-ray and optical image of a Deep Water Crab.  The left side of the image is an X-ray, while the right side is a visible light photograph.
    K12X-deep-crab-half-half005A.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of light that constructively interfere to create bright greens and blues. Magnification: x8000 when printed at 10 cm wide.
    K14SEM140611abalone_0054B.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae