Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 233 images found }

Loading ()...

  • The quartz crystal optical wedge is a simple technique to aid in specimen identification by inducing a color gradient in a polarizing microscope. The wedge is made from a crystalline block of quartz cut into a wedge angle so that the optical axis of the quartz is oriented either parallel or perpendicular to the edge of the birefringent crystal. A typical quartz wedge is useful for measurements of petrographic specimens (rock and mineral thin sections) or other birefringent materials. The quartz wedge compensator is also employed for the determining the direction of anisotropy (crystalline fast and slow axes orientation) in birefringent specimens.
    K17pol-quartzwedge_4688.jpg
  • The quartz crystal optical wedge is a simple technique to aid in specimen identification by inducing a color gradient in a polarizing microscope. The wedge is made from a crystalline block of quartz cut into a wedge angle so that the optical axis of the quartz is oriented either parallel or perpendicular to the edge of the birefringent crystal. A typical quartz wedge is useful for measurements of petrographic specimens (rock and mineral thin sections) or other birefringent materials. The quartz wedge compensator is also employed for the determining the direction of anisotropy (crystalline fast and slow axes orientation) in birefringent specimens.
    K17-quartz-wedge4692.jpg
  • A Synthetic quarts crystal that is lab grown.  This crystal will be cut into sections that will be manufactured into optical components and electrical quartz crystal oscillators. Quartz creates an electrical signal with a very precise frequency that is used to provide a stable clock signal to the rest of the circuit.
    K14synthetic-quarts2613.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3409.jpg
  • A medical bandage is pulled apart so that the adhesive can show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowbandage0224.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0179.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16bullet-sugarcubes0202.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0205.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3485.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3410.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0183.jpg
  • Beach sand is placed in a blender to show the property of triboluminescence.   As the silica grains of sand are broken in the blender they give off blue light which in turn causes the sea shell fregments to glow yellow.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16glowsand0182.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0218.jpg
  • Tape is pulled from a glass surface to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0215.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-film-3153.jpg
  • Sugar Cubes are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16sugarcubes0180.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0175.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver0174.jpg
  • Thin film interference on soap film. Bands of color are created by white light shining on a film of soap. Some of the light reflects off the surface of the film, while the rest of the light travels through the film and reflects off the back of the film. The colors are caused by light waves interfering with each other in a process called optical interference. The different colors are caused by different thickness of the soap film.
    K19Soap-Film3400.jpg
  • A WIntergreen Lifesavers are placed in a blender to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesavers0176.jpg
  • A high speed pellet hips several sugar cubes lined up.The pellet breakes the sugar crystals in the cubes to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16pellet-sugarcubes0201B.jpg
  • A candy is hit with a hammer to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16lifesaver-0194.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0204.jpg
  • Tape is pulled from a roll to show the property of triboluminescence. Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K16-glowtape0206.jpg
  • A candy is hit with a hammer to show the property of triboluminescence.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K09candyrB1.jpg
  • A candy is hit with a hammer to show the property of triboluminescence.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K09candyrA.jpg
  • An X-Ray of a modern auto-focus lens.  The different optical elements can be seen, as well as the auto-focus motor and related electronics.
    moden-lensblue.jpg
  • The anti-reflection structures on the surface of one eye element on the head of a female mosquito.  (family Culicidae).  These bump structures interact with the wave nature of light to increase the transmission of light into the eye by decreasing the reflected light.  Structures such as this are beginning to be incorporated into modern optical devices    This is a scanning electron microscope image.  The calibration bar is 1 um and the magnification is 9220 x.
    K08semmosquito-b10red.jpg
  • A candy is hit with a hammer to show the property of triboluminescence.  Triboluminescence is an optical phenomenon in which light is generated when asymmetrical crystalline bonds in a material are broken when that material is scratched, crushed, or rubbed.
    K09candyrB1-small.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of light that constructively interfere to create bright greens and blues. Magnification: x8000 when printed at 10 cm wide.
    K14SEM140611abalone_0054B.jpg
  • A spinning golf ball is flow tested in a two dimensional fluid flow. The colors relate to different pressures in the fluid. In this case the low-pressure area created by the Magnus effect contributes to the flight of the golf ball by creating lift. The rotating golf ball lift allows the ball to travel further. A high-speed flash at 1/15,000th of a second captures the action.
    newgolf0055.jpg
  • A spinning golf ball is flow tested in a two dimensional fluid flow. The colors relate to different pressures in the fluid. In this case the low-pressure area created by the Magnus effect contributes to the flight of the golf ball by creating lift. The rotating golf ball lift allows the ball to travel further. A high-speed flash at 1/15,000th of a second captures the action.
    golfball-hickory.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of light that constructively interfere to create bright greens and blues. Magnification: x1000 when printed at 10 cm wide.
    K14SEMabalone0039.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of x4000 when printed at 10 cm wide.
    K14SEM140611abalone_0061.jpg
  • Fragment of an Abalone shell; color enhanced scanning electron micrograph (SEM) of a section through an abalone (Haliotis sp.) shell. The shell is composed of layers of overlapping platelets of calcium carbonate crystals, or aragonite,  Between the layers are thin sheets of protein (not seen). This structure makes the shell much stronger than the materials would be in any other arrangement.  Abalones are edible mollusks found in warm seas. The thin layers of shell reflect light using the wave nature of light.  Each thin layer reflects a particular wavelength – together the layers reflect wavelengths of light that constructively interfere to create bright greens and blues. Magnification: x8000 when printed at 10 cm wide.
    K14SEM140611abalone_0054.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1079.jpg
  • An X-ray of a light meter
    light-meter1blueneg.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1032black.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schflame-B_1074.jpg
  • A Schlieren image of a carbon dioxide gas leaving a high preasure tank.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07SchCo2-tank_1252.jpg
  • A schlieren image of a Hair Dryer.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1371.jpg
  • A schlieren image of a glass of wine.  The wine vapor and smell of the wine contains alchol that becomes visible in a schlieren system.  The schlieren image identifies areas of different index of refractions.  In this case the alcohol in air becomes visible.
    K07Sch1123.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1045.jpg
  • A schlieren image of a a man breathing through his mouth.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0285.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Schballoon-pop_1235.jpg
  • A schlieren image of the aroma rising from a rose.  To increase the visualization of air flow around the rose, and show how smells are transported in the air - the rose was misted with pure alcohol.   The schlieren image identifies areas of different index of refraction.
    K07Sch1432.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1025.jpg
  • A schlieren image of a a man breathing through his nose.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0282.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0194.jpg
  • A schlieren image of a gas handheld lighter being ignited.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0155.jpg
  • A schlieren image of compressed air.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schl0143.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1346.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1083.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1063.jpg
  • A schlieren image of a man drinking hot coffee .  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1028.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0869.jpg
  • A schlieren image of a sparkler.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0844.jpg
  • A schlieren image of a girl smelling a rose.  To increase the visualization of air flow around the rose, and show how smells are transported in the air - the rose was misted with pure alcohol.   The schlieren image identifies areas of different index of refraction.
    K07Sch1433.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1327.jpg
  • A schlieren image of a man drinking hot coffee.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1020.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1014.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0882.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Sch-pop1234.jpg
  • Kiwano fruits (Cucumis metuliferus).  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4519.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4473.jpg
  • Kiwano fruits (Cucumis metuliferus).  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4505.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4472.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4468.jpg
  • A Black walnut fruit (Juglans nigra). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4392.jpg
  • A early Kodak Camera Model #18 folding camera is shown in X-ray.
    K19X-Kodak-model—18-010A.jpg
  • A medium format Yashica Mat model camera is shown in X-ray.
    K19X-Yashica-Mat-EM017A.jpg
  • A series of four images showing different amounts of forces. The force generated by a punch is visualized by using polarized light to show the stress generated in ballistic gel.
    K17karate-quad.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-D_3539UVVF.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-C_3541UVVF.jpg
  • Daffodil flower as seen in white light. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-D_3537white.jpg
  • A Nikon F1 camera is shown in X-ray.
    K19X-NikonF1-04A.jpg
  • A Polaroid square shooter 2 model camera is shown in X-ray.<br />
The polaroid type of camera was popular in the 1970’s and produced an image with in a few minutes.
    K19X-Polaroid-03A.jpg
  • Two polarizing filters shown at a 90-degree angle to each other.  In this orientation, the crossed filters block over 99% of the transmitted light.
    K17Crossed_4533.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 100 um and the magnification is 689 x.
    K08semmosquito-c010A.jpg
  • An x ray of a neon light bulb.  THis type of bulb is often used for spectrum experiments.
    x07-bulb12.jpg
  • A boy holding up a sheet of black plastic. This image has a corresponding visible light image.  This plastic is opaque to visible light, but is transparent to far-infrared light.  This image was taken inthe far-infrared.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    combo-ir07-350.jpg
  • Kiwano fruits (Cucumis metuliferus).  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4517.jpg
  • Kiwano fruits (Cucumis metuliferus). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4520.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4469.jpg
  • A browning banana. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. There was a small amout of white light added to the exposure to show the yellow of the banana. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4448.jpg
  • A seed pod of the thorn apple (Datura stramonium). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4400.jpg
  • A Black walnut fruit (Juglans nigra). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4393.jpg
  • Daffodil flower as seen in white light. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-C_3543white.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-A_3552UVVF.jpg
  • Here a candle is seen in a polarizing interferometer. The different colors of light represent different air pressures. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-candle_8452.jpg
  • A Falcon 35 mm film camera is shown in X-ray.
    K19X-Falcon-07A.jpg
  • An X-Ray of Iphone 6 Cell Phone / Camera.
    K19X-Iphone6—Apple-012A.jpg
  • A Kodak box Brownie camera is shown in X-ray.
    K19X-Kodak-Brownie-box-04A.jpg
  • A Kodak Disc camera model 4000 is shown in X-ray.
    K19X-Kodak-Disc-4000-02A.jpg
  • A Nikon digital D850 camera is shown in X-ray. This camera was released in September 2017 and is a professional camera with 45.4 mega pixels.
    K19X-NikonD850-012A.jpg
  • A Nimslo 3D camera is shown in X-ray.
    K19X-Nimslo3D-01C.jpg
  • A medium format Yashica Mat model camera is shown in X-ray.
    K19X-Yashica-Mat-EM017C.jpg
  • Female mosquito head (family Culicidae).  The individual eye lenses detect levels of light and dark in different directions.  Several mosquito species are vectors for human diseases, including malaria and yellow fever.   This is a scanning electron microscope image.  The calibration bar is 200 um and the magnification is 243 x.
    K08semmosquito-C012.jpg
  • An X-ray of binoculars.
    x07-bin0csBL.jpg
  • Scanning electron microscopy (SEM) of a black fly eye (species Simulium ).  The yellow is yeast cells onthe eye, their function is unknown.  The magnification is 4,410x and the calibration bar is 1 um in length.
    K08SEM-blackflyeye001C.jpg
Next
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae