Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 47 images found }

Loading ()...

  • X-Ray of the  Chinese lantern plant, (Physalis alkekengi) also called the winter cherry or bladder cherry is a member of the potato family.  The chinese lantern plant is used mostly for decorative purposes, but is also harvested for its fruit. The fruit has twice the Vitamin C of lemons and resembles a blonde-red cherry tomato.
    K11Xlatern2B.jpg
  • X-Ray of the  Chinese lantern plant, (Physalis alkekengi) also called the winter cherry or bladder cherry is a member of the potato family.  The chinese lantern plant is used mostly for decorative purposes, but is also harvested for its fruit. The fruit has twice the Vitamin C of lemons and resembles a blonde-red cherry tomato.
    K11Xlatern2C.jpg
  • Jack-in-the-pulpit X-ray (Arisaema triphyllum) is a common perennial found in swamps and rich, moist woods of eastern North America. The American Indians used this plant medicinally for a large variety of ailments.
    K11-xjackpulp3.jpg
  • Jack-in-the-pulpit X-ray (Arisaema triphyllum) is a common perennial found in swamps and rich, moist woods of eastern North America. The American Indians used this plant medicinally for a large variety of ailments.
    K11-xjackpulp1.jpg
  • Scanning Electron Micrograph (SEM) of a grain of pollen from Cannabis sativa plant. The pollen is 20 um in diameter and is scattered by air currents.  The pollen of the cannabis plant is almost identical to the hops plant, a close relative.
    K170524CPDpollen010A.jpg
  • Scanning Electron Micrograph (SEM) of a grain of pollen from Cannabis sativa plant. The pollen is 20 um in diameter and is scattered by air currents.  The pollen of the cannabis plant is almost identical to the hops plant, a close relative.
    K17SEM-canpollen025.jpg
  • Light Micrograph of pollen grains from a flower; magnification 100x at 35mm.
    K12-pollen8563.jpg
  • An X-ray of a bouquet with tulipss .  This low energy x-ray shows the interior structure of the flowers.
    K08flower-cropA.jpg
  • An X-ray of a bouquet with tulips combined with a visible light image of the came bouquet .  This low energy x-ray shows the interior structure of the flowers.
    K08flowerxraycombo1A.jpg
  • An X-ray of an iris flower (Iris germanica) .  This low energy x-ray shows the interior structure of the flower.
    irisnegCU.jpg
  • An X-ray of an iris flower (Iris germanica) .  This low energy x-ray shows the interior structure of the flower.
    irisneg.jpg
  • An X-ray of a Kentucky Coffee Tree seed pod (Gymnocladus dioicus) .  This low energy x-ray shows the interior structure of the seed pod. A common name for this tree is the Coffeetree
    x07KentuckyCoffeeTreepod7blue.jpg
  • An X-ray of a Kentucky Coffee Tree seed pod (Gymnocladus dioicus) .  This low energy x-ray shows the interior structure of the seed pod. A common name for this tree is the Coffeetree
    x07KentuckyCoffeeTreepodneg.jpg
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinth01.jpg
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinthCU3.jpg
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinthCU2.jpg
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinthCU1.jpg
  • X-Ray of the  Hybrid hyacinth (Hyacinthus sp.) .
    K11X-hyacinth02.jpg
  • Scanning electron microscope image of a strawberry seed. Strawberry (Fragaria x ananassa) magnified 50x.
    K07SEM-strawberry1.jpg
  • Scanning electron microscope image of a strawberry seed. Strawberry (Fragaria x ananassa) magnified 50x.
    K07SEM-strawberry2.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072A.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517-B027pan.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170525-B-cpdM080C.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170525-B-cpdM080B.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170525-B-cpdM080.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072B1.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170524H072B.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517bud-F055panC.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517bud-F055panA.jpg
  • The stigma of Cannabis sativa. The stigma is the structure on the female flower that catches the male pollen. The sexual transfer of genetic materials is critical for creating seeds.  This Scanning Electron Microscope image (SEM) has false color applied. The stigma is 1 mm in diameter in this image.
    K170517bud-F055panB.jpg
  • X-Ray of a Maple Seed (Acer sp).
    K07X07mapleseednegGR.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 125x and represents a section of the plant 1 mm wide...
    K08SEmliverwort000B.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 45x and represents a section of the plant 4 mm wide...
    K08SEmliverwort002B.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 125x and represents a section of the plant 1 mm wide...
    K08SEmliverwort000C.jpg
  • Scanning electron microscope image of Snake Liverwort (Conocephalum conicum).  This specimen was collected in the moist glens of the Finger Lake Region of New York State.  Liverworts (class Hepaticae) are related to mosses. They grow in damp habitats and are found on the ground and moist rock surfaces. They have no true vascular tissue, but are attached to the ground by means of root-like rhizoids.  Liverworts can reproduce vegetatively by fragmentation of the thallus or by producing specialized cell masses called gemmae.   The central structures in this image are the reproduction organs. Magnification is 45x and represents a section of the plant 4 mm wide...
    K08SEmliverwort002B.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-D027panA.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-F048panA.jpg
  • The pollen from a male cannabis plant is nestled into the female stigma and is in the process of transferring genetic material to the female to create a seed.  The pollen is 20 um in diameter. A single grain of pollen is too small to see with the human eye. The pollen is scattered by air current to pollenate the female plant.
    K170525-E038panA.jpg
  • Scanning electron microscope (SEM) image of the  sporangia (spore sacs)  of the "male fern".  The sporangia are borne on the undersides of the leaf fronds in brown kidney- shaped structures known as sori.   Each sporangium is a biconvex capsule in which the mature spores lie freely.   As the mature sporangium dries, the tension in the walls of the annulus causes the sporangium to rupture, expelling the spores which are then distributed by the wind. The calibration bar is 20 um and the image was collected at a magnification of 2,280x.
    K08semfern049B.jpg
  • Scanning electron microscope (SEM) image of the  sporangia (spore sacs)  of the "male fern".  The sporangia are borne on the undersides of the leaf fronds in brown kidney- shaped structures known as sori.   Each sporangium is a biconvex capsule in which the mature spores lie freely.   As the mature sporangium dries, the tension in the walls of the annulus causes the sporangium to rupture, expelling the spores which are then distributed by the wind. The calibration bar is 20 um and the image was collected at a magnification of 2,280x.
    K08semfern045b.jpg
  • Cocoa pod (Theobroma cacao). This is the fruit of the cocoa, or cacao, tree from which cocoa beans are extracted. The leathery yellow pod contains up to 100 beans embedded in a soft pulp. These are dried, roasted and ground to produce cocoa powder, which is then used to make chocolate.
    K12-cocapod1146.jpg
  • Cocoa pod (Theobroma cacao). This is the fruit of the cocoa, or cacao, tree from which cocoa beans are extracted. The leathery yellow pod contains up to 100 beans embedded in a soft pulp. These are dried, roasted and ground to produce cocoa powder, which is then used to make chocolate.
    K12-cocapod1130.jpg
  • An X-ray of a Passion flower (Passiflora sp.) This tropical climber is grown throughout the world for its ornamental value.
    K15XPassion_Vine_Side2.jpg
  • An X-ray of a Passion flower (Passiflora sp.) This tropical climber is grown throughout the world for its ornamental value.
    K15XPassion_Vine_Side3.jpg
  • An X-ray of a Passion flower (Passiflora sp.) This tropical climber is grown throughout the world for its ornamental value.
    K15X-Passion2_Vine_Above_White.jpg
  • An X-ray of a Passion flower (Passiflora sp.) This tropical climber is grown throughout the world for its ornamental value.
    K15X-Passion2_Vine_Above02.jpg
  • An X-ray of a Passion flower (Passiflora sp.) This tropical climber is grown throughout the world for its ornamental value.
    K15XPassion_Vine_Side_White.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae