Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 62 images found }

Loading ()...

  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration062.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration079.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration072.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration075.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration074.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration076.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration078.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration071.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration067.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration065.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare03.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare002.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare001.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration064.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration068.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare-set2.jpg
  • A cup and plate breaking as it hits the floor.  Photographed with high-speed flash of a duration of 1/1,000,000th of a second.  .
    K080126Smash0034A.jpg
  • A plate breaking as it hits the floor.  Photographed with high-speed flash of a duration of 1/1,000,000th of a second.  .
    K080126Smash0032A.jpg
  • Ceramic Art Plate
    RA0038-Lev.jpg
  • SEM image of Human blood platelets in the process of clotting. This sample was taken from the root of a tooth from an 18 year old male during oral surgery. Magnification is x10,100 when printed 10 cm wide.
    tissue041.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x9540 when printed 10 cm wide.
    K14SEM-platelets-tissue054.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x3330 when printed 10 cm wide.
    K14SEM-platelets-tissue024.jpg
  • Falling toast photographed with a 25 hz strobe.  That is the flash is set off 25 times a second..The falling toast is said to always land buttered side down.
    K12-strobotoast7818.jpg
  • X-ray image of Chili pepper.  Chili pepper is the fruit of plants from the genus Capsicum, members of the nightshade family, Solanaceae.
    K15X-Chilipeppers02B.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x9540 when printed 10 cm wide.
    K14SEM-platelets-tissue054B.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x3330 when printed 10 cm wide.
    K14SEM-platelets-tissue024B.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x9420 when printed 10 cm wide.
    K14SEM-platelets-tissue014A.jpg
  • Falling toast photographed with a 25 hz strobe.  That is the flash is set off 25 times a second..The falling toast is said to always land buttered side down.
    K12-strobotoast7840.jpg
  • Falling toast photographed with a 25 hz strobe.  That is the flash is set off 25 times a second..The falling toast is said to always land buttered side down.
    K12-strobotoast7838.jpg
  • X-ray image of Chili pepper.  Chili pepper is the fruit of plants from the genus Capsicum, members of the nightshade family, Solanaceae.
    K15X-Chilipeppers02.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x6530 when printed 10 cm wide.
    K14SEM-platelets-tissue052.jpg
  • Falling toast photographed with a 25 hz strobe.  That is the flash is set off 25 times a second..The falling toast is said to always land buttered side down.
    K12-strobotoast7837 copy.jpg
  • X-ray image of Chili pepper.  Chili pepper is the fruit of plants from the genus Capsicum, members of the nightshade family, Solanaceae.
    K15X-Chilipeppers03B.jpg
  • X-ray image of Chili pepper.  Chili pepper is the fruit of plants from the genus Capsicum, members of the nightshade family, Solanaceae.
    K15X-Chilipeppers03A.jpg
  • An SEM image of Human blood platelets in the process of clotting.  This sample was taken from the root of a tooth from an 18 year old male during oral surgery.  Magnification is x9420 when printed 10 cm wide.
    K14SEM-platelets-tissue014.jpg
  • Falling toast photographed with a 25 hz strobe.  That is the flash is set off 25 times a second..The falling toast is said to always land buttered side down.
    K12-strobotoast7817.jpg
  • The electrostatic field lines around two parallel plates are shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left plate is charged to -30,000 volts while the right plate has a potential of + 30,000 volts.  This image is part of a series showing different charging conditions.
    K11-efield001B.jpg
  • The electrostatic field lines around  a point charge and a plate.The electric field is shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right plate has a potential of + 30,000 volts.   This image is part of a series showing different charging conditions.
    K11-efield006A.jpg
  • The electrostatic field lines around  a point charge and a plate.The electric field is shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right plate has a potential of + 30,000 volts.   This image is part of a series showing different charging conditions.
    K11-efield006.JPG
  • The electrostatic field lines around two parallel plates are shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left and right plates have idential gharge of +30,000 volts. This image is part of a series showing different charging conditions.
    K11-efield003C.jpg
  • The electrostatic field lines around two parallel plates are shown by placing the two plates below a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left and right plates have idential gharge of +30,000 volts. This image is part of a series showing different charging conditions.
    K11-efield003A.jpg
  • The electrostatic field lines around a point charge and a cylinder.   The electric fields are shown by placing the two charged objects in a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right ring has a potential of + 30,000 volts.  This image is part of a series showing different charging conditions.  Of special importance is the lack of fields showing inside the cylinder.  This is the classic case of no electrical fields inside an electrical conductor.  In this image the cylinder acts as a Faraday cage and shields the enclosed area from any external electrical fields..
    K11-efield012.JPG
  • The electrostatic field lines around a point charge and a cylinder.   The electric fields are shown by placing the two charged objects in a pan filled with cooking oil and pepper flakes.  The pepper flakes align in the electric field and allow visualization of the field.  In this image the left point is charged to -30,000 volts while the right ring has a potential of + 30,000 volts.  This image is part of a series showing different charging conditions.  Of special importance is the lack of fields showing inside the cylinder.  This is the classic case of no electrical fields inside an electrical conductor.  In this image the cylinder acts as a Faraday cage and shields the enclosed area from any external electrical fields..
    K11-efield010.JPG
  • Polarized light is used to show the stress created by a C clamp on a sheet of plate glass.<br />
 The polarized light exhibits birefringence in stressed glass.  This technique is often used in industrial applications to determine internal stress in transparent models.
    K17Pol-glass4576.jpg
  • Polarized light is used to show the stress created by a C clamp on a sheet of plate glass.<br />
 The polarized light exhibits birefringence in stressed glass.  This technique is often used in industrial applications to determine internal stress in transparent models.
    K17Pol-glass4566.jpg
  • Polarized light is used to show the stress created by a C clamp on a sheet of plate glass.<br />
 The polarized light exhibits birefringence in stressed glass.  This technique is often used in industrial applications to determine internal stress in transparent models.
    K17Pol-glass4612.jpg
  • Polarized light is used to show the stress created by a C clamp on a sheet of plate glass.<br />
 The polarized light exhibits birefringence in stressed glass.  This technique is often used in industrial applications to determine internal stress in transparent models.
    K17Pol-glass4568.jpg
  • Polarized light is used to show the stress created by a C clamp on a sheet of plate glass.<br />
 The polarized light exhibits birefringence in stressed glass.  This technique is often used in industrial applications to determine internal stress in transparent models.
    K17Pol-glass4574.jpg
  • Polarized light is used to show the stress created by a C clamp on a sheet of plate glass.<br />
 The polarized light exhibits birefringence in stressed glass.  This technique is often used in industrial applications to determine internal stress in transparent models.
    K17Pol-glass4603.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp04BW.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp03.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp03BW.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp02.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp05BW.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp01C.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp01B.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-scale-E01BW.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-scale-E01.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp05.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp04.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-scale-E01B.jpg
  • Atlantic sturgeon (Acipenser sturio) The thick plates of the scales offer the fish protection from predators. These scales are from the critically endangered Atlantic, Common, or Sea Sturgeon (Acipenser sturio). These samples are from Quebec, Canada. The average size of a scale here is 5 cm.
    K15X-Sturgeon-comp01.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae