Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 8 images found }

Loading ()...

  • This image of a man over inflating a balloon was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    tedk0025.jpg
  • This image is part of a sequence where a man over inflates a balloon until it burst.  The image was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    K11-hsballoon6873A.jpg
  • This image is part of a sequence where a man over inflates a balloon until it burst.  The image was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    K11-hsballoon6863A.jpg
  • This image is part of a sequence where a man over inflates a balloon until it burst.  The image was taken with a high speed flash system. The motion is effectively frozen in time due to the short duration of the flash (1/20,000 th of a second). The balloon was filled with a few milliliters of water before it was inflated. When the balloon is popped, the gas quickly expands and cools. This cooling converts the water vapor in the balloon into suspended water droplets which can be seen as a cloud.
    K11-hsballoon6826.JPG
  • A physical reaction where candy mint mentos are dropped into diet soda.  The sugar coatings on the mints acts like a perfect nucleation site for the dissolved carbon dioxide in the soda to turn into bubbles.  The result is the majority of the carbon dioxide changes from liquid to gas form in just a few seconds.  This sudden change of phase causes a plume of soda to be ejected from the bottle at great force causing the soda to make a fountain two meters high.
    K07HSmentos025.jpg
  • A child experimnets with dropping mentos mints into diet soda.  A physical reaction where candy mint mentos are dropped into diet soda.  The sugar coatings on the mints acts like a perfect nucleation site for the dissolved carbon dioxide in the soda to turn into bubbles.  The result is the majority of the carbon dioxide changes from liquid to gas form in just a few seconds.  This sudden change of phase causes a plume of soda to be ejected from the bottle at great force causing the soda to make a fountain two meters high.
    K07HSmentos027.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Schballoon-pop_1235.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Sch-pop1234.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae