Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 34 images found }

Loading ()...

  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami212.jpg
  • This is an x-ray of a mathematical origami.  Mathematical origami is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K11X-oragami-002-12inchB.jpg
  • This is an x-ray of a mathematical origami.  Mathematical origami is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K11X-oragami-002-12inch.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami216.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami215.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami209.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-peperorigami7919.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami213.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami203.jpg
  • This is an example of mathematical origami which is a new and exciting field of mathematics.  This surface is made from a single sheet of paper with numerous folds and no cuts..
    K12-origami201.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-36.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-45.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-16.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-18.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-29.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-15.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-9.jpg
  • A voltaic pile battery is used to light an LED.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-4110.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-46.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-42.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-44.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-14.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-2.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-3.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-39.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-37.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-34.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-30.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-17.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-5.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-1.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-47.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-35.jpg
  • A voltaic pile battery.  This type of battery was the first chemical battery and was invented by Alessandro Volta in 1791.  This battery consists of two different metals.  Here copper United States pennies manufactured before 1982 were used and the source of Zinc was zinc coated washers.  Cotton paper is placed between the coins and wetted with an acid.  In this experiment the acid used was 5% acetic acid from household vinegar. The vinegar is the electrolyte<br />
Unlike the Leyden jar, the voltaic pile produces a continuous electricity and stable current. The order of the stack is copper, zinc and then paper.  This pattern is repeated throughout the battery.
    K16ZnCubattery-11.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae