Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 55 images found }

Loading ()...

  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13apple033.JPG
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13apple020.JPG
  • A .22 caliber bullet hitting a glass containing water. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and glass photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13HSglass040.jpg
  • A .22 caliber bullet hitting crayons. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and crayons photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13HScrayons032.jpg
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13apple043.JPG
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13apple026.JPG
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    apple_0021_RT8.jpg
  • A .22 caliber bullet hitting crayons. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and crayons photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13HScrayons037.jpg
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13apple019.JPG
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K12-HSapple-2752.jpg
  • A .22 caliber bullet hitting an apple. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and apple photographed at at 1/1,000,000th of a second flash/strobe speed.
    K13apple044.JPG
  • A .22 caliber bullet hitting a hot pepper. The bullet is travelling at 660 feet per second (201 meters per second). This image shows the collision of the bullet and hot pepper photographed at 1/1,000,000th of a second lash/strobe speed.
    hot-pepperbullet.jpg
  • A .22 caliber bullet hitting four pencils.  The bullet is traveling at 660 feet per second (201.2 meters per second). This image shows the collision of the bullet and pencil photographed at  1/1,000,000th of a second.
    K08HSbullets_3777.jpg
  • A .22 caliber bullet hitting a pencil.  The bullet is traveling at 660 feet per second (201.2 meters per second). This image shows the collision of the bullet and pencil photographed at  1/1,000,000th of a second.
    K08HSbullets_3768.jpg
  • A .22 caliber bullet hitting a pencil.  The bullet is traveling at 660 feet per second (201.2 meters per second). This image shows the collision of the bullet and pencil photographed at  1/1,000,000th of a second.
    K08HSbullets_3656.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4400.jpg
  • A .357 caliber bullet is fired from a hand gun.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-357magt4426.jpg
  • The supersonic shockwave that exits the barrel a .22 caliber rifle in front of the bullet.  This pressure wave is responsible for the loud sound of the gun.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quicksho4416.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0046.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0030X.jpg
  • A .45 caliber handgun firing a bullet.  This image freezes the motion by using a high speed flash with a duration of   1/2,000,000th of a second.  The sparks are from gunpowder that was still burring as it left the barrel behind the bullet.
    K0845calB_3822B.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The lack of a bow wave in front of the bullets shows that the bullet is moving slower than the speed of sound.  This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.  .
    K08-22subsonic_4411.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0015.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0028.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0015.jpg
  • A .45 caliber handgun firing a bullet.  This image freezes the motion by using a high speed flash with a duration of   1/2,000,000th of a second.  The sparks are from gunpowder that was still burring as it left the barrel behind the bullet.
    K0845calB_3822B2.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4398.jpg
  • A .22 caliber bullet is fired from a rifle. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0028.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0046X.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second. The origional colors have been changed in Photoshop.
    K20-polint-bullet_0046X.jpg
  • A .22 caliber bullet is fired from a rifle. The pullet is passing through a thin sheet of glass. Here the bullet is seen in a polarizing interferometer. The different colors of light represent different air pressures. The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound. The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle. This image freezes the motion by using a high speed flash with a duration of 1/2,000,000th of a second.
    K20-polint-bullet_0030A.jpg
  • A .45 caliber handgun firing a bullet.  This image freezes the motion by using a high speed flash with a duration of   1/2,000,000th of a second.  The sparks are from gunpowder that was still burring as it left the barrel behind the bullet.
    K0845calA_3822.jpg
  • A .22 caliber bullet is fired from a rifle.  The schlieren optical system images different air pressures with different colors of light.  The clear bow wave in front of the bullets shows that the bullet is moving faster than the speed of sound.  The exact velocity of this supersonic bullet can be calculated from measurements of the bow wake angle.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quickshot_4398blue.jpg
  • Corn, Zea mays, seedling recently germinated. The upward growing shoot at this point consists of the coleoptile being fed by the endosperm stored within the remains of the seed.
    K13-corn-sprout022.JPG
  • Corn, Zea mays, seedling recently germinated. The upward growing shoot at this point consists of the coleoptile being fed by the endosperm stored within the remains of the seed.
    K13-corn-sprout023.JPG
  • Corn, Zea mays, seedling recently germinated. The upward growing shoot at this point consists of the coleoptile being fed by the endosperm stored within the remains of the seed.
    K13-corn-sprout019.JPG
  • Corn, Zea mays, seedling recently germinated. The upward growing shoot at this point consists of the coleoptile being fed by the endosperm stored within the remains of the seed.
    K13-corn-sprout017.JPG
  • A .45 caliber bullet exiting the gun. This image is part of a series taken 1/1,000,000th of a second apart.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-45auto-sequence2.jpg
  • A .45 caliber bullet exiting the gun. This image is part of a series taken 1/1,000,000th of a second apart.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-45auto-sequence1.jpg
  • A .45 caliber bullet exiting the spent gunpowder.  This event takes place approximately 6 inches in front of the gun.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-22quicksho4424.jpg
  • A .45 caliber bullet exiting the gun. This image is part of a series taken 1/1,000,000th of a second apart.  The gunpowder still has velocity and will travel up to 20 feet from the point of discharge.  This gunpowder can be detected on clothing and skin to determine the location of individuals at the scene of a crime.  The schlieren optical system images different air pressures with different colors of light.   This image freezes the motion by using a high speed flash with a duration of  1/2,000,000th of a second.
    K08-45autot_4439.jpg
  • An X-ray of asparagus (Asparagus officinalis). Source of folic acid, potassium, beta-carotene, C,A, and E vitamins.
    K15Xasperigus2B.jpg
  • An X-ray of asparagus (Asparagus officinalis). Source of folic acid, potassium, beta-carotene, C,A, and E vitamins.
    K15Xasperigus1.jpg
  • An X-ray of asparagus (Asparagus officinalis). Source of folic acid, potassium, beta-carotene, C,A, and E vitamins.
    K15Xasperigus1B.jpg
  • An X-ray of asparagus (Asparagus officinalis). Source of folic acid, potassium, beta-carotene, C,A, and E vitamins.
    K15Xasperigus2.jpg
  • X-Ray of a Paintball Gun. A paintball gun is a gun that shoots round balls of paint using high pressure carbon dioxide gas.  The gas cylinder is shown in the picture, as are the paint balls.  Paintball is now a sport.
    K07x07painball1FC.jpg
  • An X-ray of a toy gun. This gun shoots sponge darts out the front when the trigger is pulled.
    nerfgun1neg.jpg
  • An X-ray of a squirt gun. This gun shoots water out the front when the trigger is pulled. This is a false color x-ray.
    gun6fixFC.jpg
  • An X-ray of an air gun.  This gun shoots plastic pellets by air pressure.  The gun is designed to be the same weight and size as a real hand gun.
    airsoftgun13x19.jpg
  • An X-ray of a squirt gun. This gun shoots water out the front when the trigger is pulled.
    squrtgun1sfpk.jpg
  • An X-ray of a toy gun. This gun shoots sponge darts out the front when the trigger is pulled.
    nerfgun1negFC.jpg
  • An X-ray of a confetti gun. This gun shoots streamers of confetti at a party.  The shell of confetti can be seen above the trigger.
    gun2fix8x10FC.jpg
  • X-Ray of a Paintball Gun. A paintball gun is a gun that shoots round balls of paint using high pressure carbon dioxide gas.  The gas cylinder is shown in the picture, as are the paint balls.  Paintball is now a sport.
    K07x07painball1FC2.jpg
  • An X-ray of an air gun.  This gun shoots plastic pellets by air pressure.  The gun is designed to be the same weight and size as a real hand gun.  This is a false color x-ray.
    airsoftgun11x14FC.jpg
  • An X-ray of a squirt gun. This gun shoots water when the trigger is pulled.
    gun7fix10FC.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae