Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 53 images found }

Loading ()...

  • “Yooperlite” is the common name for syenite rich in fluorescent sodalite. These specimens of fluorescent sodalite were recently discovered Michigan.<br />
The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-UVIVF_5667.jpg
  • “Yooperlite” is the common name for syenite rich in fluorescent sodalite. These specimens of fluorescent sodalite were recently discovered Michigan. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_5669.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4472.jpg
  • Kiwano fruits (Cucumis metuliferus).  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4519.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4473.jpg
  • Kiwano fruits (Cucumis metuliferus).  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4505.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4469.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4468.jpg
  • A Black walnut fruit (Juglans nigra). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4392.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-C_3541UVVF.jpg
  • Flint corn (Zea mays indurata) commonly known as Indian corn is the same species but a variant of maize.  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4529.jpg
  • Kiwano fruits (Cucumis metuliferus).  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4517.jpg
  • A browning banana. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. There was a small amout of white light added to the exposure to show the yellow of the banana. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4448.jpg
  • A seed pod of the thorn apple (Datura stramonium). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4400.jpg
  • A Black walnut fruit (Juglans nigra). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4393.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-D_3539UVVF.jpg
  • Daffodil flower as seen in white light. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-C_3543white.jpg
  • Daffodil flower as seen in white light. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-D_3537white.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-A_3552UVVF.jpg
  • Flint corn (Zea mays indurata) commonly known as Indian corn is the same species but a variant of maize.  The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4524.jpg
  • Kiwano fruits (Cucumis metuliferus). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4520.jpg
  • Kiwano fruits (Cucumis metuliferus). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4516.jpg
  • Kiwano fruits (Cucumis metuliferus). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4504.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4467.jpg
  • A seed pod of the thorn apple (Datura stramonium). The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet visible light fluorescence and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4402.jpg
  • Flint corn (Zea mays indurata) commonly known as Indian corn is the same species but a variant of maize.  The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4530.jpg
  • A browning banana. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4446.jpg
  • A browning banana. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series
    K20-UVIVF_4440.jpg
  • Daffodil flower as seen in UV light. The specimen was illuminated with shortwave ultraviolet light (UV) that cannot be detected with the camera used for this image. The tissues in the plant absorbed the UV light and fluoresced in the visible spectrum. This technique is called ultraviolet light induced visible light fluorescence (UVIVLF) and is often used in biology to detect unique compounds in samples. This image is part of a series.
    K20-B_3551UVVF.jpg
  • Daffodil flower as seen in white light. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-A_3554white.jpg
  • Kiwi fruit, (Actinidia deliciosa). The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4466.jpg
  • Flint corn (Zea mays indurata) commonly known as Indian corn is the same species but a variant of maize.  The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-UVIVF_4525.jpg
  • Daffodil flower as seen in white light. The specimen was illuminated with white light to compare it with the shortwave ultraviolet light (UV) image in this series. This image is part of a series
    K20-B_3550UVVF.jpg
  • willemite photographed in short wave uv light on the laft and white light on teh right - the two images are digitaly combined.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3998combo.jpg
  • willemite photographed in short wave uv light.  Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-willemite3998.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8715.jpg
  • Two different lights combind into one image.  The left part is UV light, while the right part is white light.  A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside87combo.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8709.jpg
  • Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVroc8696.jpg
  • Calcite (red), willemite (green) and franklinite (black) from New Jersey, photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVroc3983.JPG
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8716.jpg
  • A specimen of Diopside (blue-green in UV), Humite (yellow in UV) and Calcite (red in UV) collected from the Long Lake Zinc Mine in Frontenac County, Ontario, Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVDiopside8712.jpg
  • Hackmanite is an important variety of sodalite exhibiting Florescence.  This specimen hackmanite is from Ontario Canada.  Photographed under short-wave ultraviolet light.  Part of a series of the specimen in different lights.
    K12-UVHackmanite8707.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4005.jpg
  • This mineral produces a strong yellow color when exposed to long wave ultraviolet (UV) light. Wernerite is a variation of scapolite.  Collected in Grenville Québec, Canada.  Wernerite is considered one of the strongest fluorescent minerals in the long wave.  This mineral was named in the early 1800's by Abraham Gottlob Werner (1749-1817) who was a well known professor of mineralogy in German mineralogy professor.
    K12-Wernerite4001.jpg
  • Hackmanite is an important variety of sodalite exhibiting Florescence.  This specimen hackmanite is from Ontario Canada.  Photographed under white light.  Part of a series of the specimen in different lights.
    K12-UVHackmanite8703.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3991.jpg
  • .This Fluorescent mineral illimaussaq Complex. This specimen contains Polylithionite (green) and Tugtupite that fluoresces red.  Collected on Taseq Slopes Greenland. This is part of a series.
    K12-Tugtupite3988.jpg
  • Calcite , willemite  and franklinite (black) from New Jersey, photographed under white light.  Part of a series of the specimen in different lights.
    K12-UVroc8694.jpg
  • Fluorescent Coral in Short Wave UV light. A close up image of Favia sp. Coral. This species of coral glows brightly when illuminated in short wave ultra-violet (UV) light.  Favia is a genus of reef building stony corals in the family Faviidae.  This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals043.JPG
  • An image of Cycloseris erosa coral in Short wave UV Light showing green Fluorescence.  This species of coral will glow brightly when illuminated in ultra-violet(UV) light.  Corals in the genus Cycloseris are mostly solitary and free living, some attaining 10 centimetres in diameter. The discs are either round or oval and the central mouth, which is surrounded by tentacles, may be a slit. The polyp sits in a calcareous cup, the corallite, and only extends its tentacles to feed at night. It is thought the glow may attract symbiotic algae, or protect the coral from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals033.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals030.JPG
  • An image of Stichodactyla taptum anemone in short wave UV Light showing Fluorescence.  This species of anemone will glow brightly when illuminated in ultra-violet(UV) light.  It is thought the glow may protect the anemone from the intense ultraviolet light of the Sun in shallow water. This image is part of a series showing the identical specimen in white light and UV light.
    K12UVcorals024.JPG
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae