Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 35 images found }

Loading ()...

  • A car spark plug firing.  The spark plug is the trigger that causes the gasoline to burn at a specific time in the cars internal combustion engine.  The spark plug fires and give the gas/air mixture the activation energy to start to burn.  This is a critical component in the thermodynamic cycle of an internal combustion engine.  A dirty or poorly adjusted spark plug will cause an engine to mis-fire, or fail to run.
    K10sparkplug_2234.jpg
  • A close-up car spark plug firing.  The spark plug is the trigger that causes the gasoline to burn at a specific time in the cars internal combustion engine.  The spark plug fires and give the gas/air mixture the activation energy to start to burn.  This is a critical component in the thermodynamic cycle of an internal combustion engine.  A dirty or poorly adjusted spark plug will cause an engine to mis-fire, or fail to run.
    K10sparkplug2362.jpg
  • A car spark plug firing.  The spark plug is the trigger that causes the gasoline to burn at a specific time in the cars internal combustion engine.  The spark plug fires and give the gas/air mixture the activation energy to start to burn.  This is a critical component in the thermodynamic cycle of an internal combustion engine.  A dirty or poorly adjusted spark plug will cause an engine to mis-fire, or fail to run.
    K10sparkplug2330.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine. .
    K12-combustion7955.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine. .
    K12-combustion8008.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine.  This image is part of a sequence showing the chamber before and after ignition..
    K12-combustion8020.jpg
  • This is a demonstration used to show the principle of heat of compression.  This is the physical process that makes Diesel engines possible.   To work the demonstration, a small sample of cotton is placed in the chamber.  The plunger is then forced down and held in place with considerable force.  The air in the chamber is forced into a very small volume, thus heating the air above the flash temperature of the Cotton.  The same process take place in a Diesel engine, but the fuel is oil.  The Diesel engine is much more efficient that a gasoline engine.  This image is part of a sequence showing the chamber before and after ignition..
    K12-combustion8014.jpg
  • A schlieren image of a Hair Dryer.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1371.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1079.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1025.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1045.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Schballoon-pop_1235.jpg
  • A schlieren image of the aroma rising from a rose.  To increase the visualization of air flow around the rose, and show how smells are transported in the air - the rose was misted with pure alcohol.   The schlieren image identifies areas of different index of refraction.
    K07Sch1432.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schflame-B_1074.jpg
  • A schlieren image of a candle and match.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1083.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0869.jpg
  • A schlieren image of a sparkler.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0844.jpg
  • A schlieren image of compressed air.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Schl0143.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1346.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1032black.jpg
  • A schlieren image of a a man breathing through his mouth.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0285.jpg
  • Schlieren image of a hot light bulb.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1327.jpg
  • A schlieren image of a man drinking hot coffee .  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1028.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1014.jpg
  • A Schlieren image of a balloon popping.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen when the balloon is popped.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07Sch-pop1234.jpg
  • A schlieren image of a glass of wine.  The wine vapor and smell of the wine contains alchol that becomes visible in a schlieren system.  The schlieren image identifies areas of different index of refractions.  In this case the alcohol in air becomes visible.
    K07Sch1123.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1063.jpg
  • A Schlieren image of a carbon dioxide gas leaving a high preasure tank.  To increase the schlieren effect, the balloon is filed with pure carbon dioxide gas.  The carbon dioxide gas has a different index of refraction than air, so the mixing can be clearly seen.  The schlieren image identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.  This image was captured using a high speed flash with a duration of 1/1,000,000th of a second.
    K07SchCo2-tank_1252.jpg
  • X-ray of a thermos or vacuum flask. The internal chamber (red), and the liquid that it contains, is kept hot or cold by an insulating vacuum.  The vacuum is contained in an aluminum coated glass container.  The internal walls of the flask are coated with aluminum to reflect heat that is radiated away. Most of the heat will be gained or lost through the neck of the flask. .
    K11X-thermos1.jpg
  • A schlieren image of a girl smelling a rose.  To increase the visualization of air flow around the rose, and show how smells are transported in the air - the rose was misted with pure alcohol.   The schlieren image identifies areas of different index of refraction.
    K07Sch1433.jpg
  • A schlieren image of a man drinking hot coffee.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch1020.jpg
  • A schlieren image of a candle.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0882.jpg
  • A schlieren image of a a man breathing through his nose.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0282.jpg
  • A schlieren image of a hot coffee cup.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0194.jpg
  • A schlieren image of a gas handheld lighter being ignited.  The schlieren images identifies areas of different temperature by using the change in the index of refraction of a fluid due to a change in temperature.
    K07Sch0155.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae