Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 66 images found }

Loading ()...

  • Tornado made by a laboratory apparatus. These model tornadoes are used to study the structure of wind velocities inside the vortex. Each year the complex nature of tornadoes gets better understood. Experiments like these lead give Meteorologists and weather forecasters the ability to predict the path of a tornado with greater accuracy.
    IMG_3537al.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8574.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8520.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5855.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5795.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5649.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5450.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5287.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4829.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4648.jpg
  • These bulbous clouds form at the interface between calm could free air and the violent updrafts of a thunder storm.
    K08clouds4656.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8784.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8505.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6525.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6511.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9862PR-cropped.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9738PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    fantastic2003.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K14-snowflake9024A.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8626.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8563.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8558.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8545.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6817.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6794.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6528.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6840.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6824B.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6743.jpg
  • An experiment is preformed to show how much liquid a pitcher of snow creates when it melts..This image is part of a series..
    K10snowmelt-montage1.jpg
  • An experiment is preformed to show how much liquid a pitcher of snow creates when it melts..This image is part of a series..
    K10blue-melt1.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5107.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4206.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    coin_5128.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    bIMG_4779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2100300012_RT8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    070214frost0006.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    Snowflake05-1936.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13Snow011A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13snow006A.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8632.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11snowflake6501.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5804.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5429.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4967.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300134_rt8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300089_RT8PR.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8607.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    k11-snowflake0058.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6507.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9604PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    snowKINSMAN5287.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8584.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6846.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6819.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5329.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5221.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5194.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4961.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4604.jpg
  • This is a weathered sample of the rock used to make the monument Stonehenge in England.; This is a sample of Preseli Spotted Dolerite—a chemically altered igneous rock containing spots or clusters of plagioclase feldspar. It is a medium grained dark and heavy rock; harder than granite.; The bluestones at Stonehenge were placed there during the third phase of construction at Stonehenge around 2300 BC.; The majority of them are believed to have been brought from the Preseli Hills; about 250 miles away in Wales.
    stonehenge-bluestone_0169.jpg
  • Tree growing over a rock in Killarney Provincial park in Ontario, Canada.
    K09killrootshdr3749.jpg
  • A velomobile or bicycle car is a human-powered vehicle, enclosed for protection from weather and collisions.  Here a young man is peddling the velomobile in a recumbent position.  The velomobile is built on a recumbent bike frame with two steerable wheels in the front and one wheel in the back.  This tricycle design allows for a stable vehicle on wet roads.  The vehicle is air streamed to decrease wind resistance and shield the rider from rain.  As fuel consumption becomes more of an issue, more commuters will switch to human powered vehicles.
    K08velomobile9963.jpg
  • A velomobile or bicycle car is a human-powered vehicle, enclosed for protection from weather and collisions.  Here a man is peddling the velomobile in a recumbent position.  The velomobile is built on a recumbent bike frame with two steerable wheels in the front and one wheel in the back.  This tricycle design allows for a stable vehicle on wet roads.  The vehicle is air streamed to decrease wind resistance and shield the rider from rain.  As fuel consumption becomes more of an issue, more commuters will switch to human powered vehicles.
    K08velomobile0106.jpg
  • A velomobile or bicycle car is a human-powered vehicle, enclosed for protection from weather and collisions.  Here a young man is peddling the velomobile in a recumbent position.  The velomobile is built on a recumbent bike frame with two steerable wheels in the front and one wheel in the back.  This tricycle design allows for a stable vehicle on wet roads.  The vehicle is air streamed to decrease wind resistance and shield the rider from rain.  As fuel consumption becomes more of an issue, more commuters will switch to human powered vehicles.
    K08velomobile9969.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae