Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 93 images found }

Loading ()...

  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseC-ir02.tif
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseD001.TIF
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07HouseB-IRNW.tif
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07HouseD-IR01.tif
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseC002.TIF
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseA001.TIF
  • A thermogram of a home in winter. The temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseA-IR-NW.tif
  • A home in winter.  This image was taken to have a visual photograph to compare with a matching infrared image.  This image is one of a set used to compare a house in visible light to infrared light (heat).
    K07houseB002.TIF
  • Thermogram of a house in winter.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    ir07-376.jpg
  • A four month pinhole photo of the sun moving across the sky.  The exposure ended on December 21, 2011.  The sun is at the lowest angle in the sky on the winter equinox. Photographed in Rochestester, New York, USA
    K12-skypinhole21-2011B.jpg
  • A Thermogram of a young boy without a hat.  This image was taken in winter.The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature.  This image is part of a set.
    Ir07-46.jpg
  • A Thermogram of a young boy with a hat.  This image was taken in winter.  The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-45.jpg
  • A two week pinhole photo of the sun moving across the sky.  The exposure ended on september 17, 2011.  The sun is at the lowest angle in the sky on the winter equinox. Photographed Keuka Lake, New York, USA
    K12-skypinhole9-17-2011A.jpg
  • A four month pinhole photo of the sun moving across the sky.  The exposure ended on December 21, 2011.  The sun is at the lowest angle in the sky on the winter equinox. Photographed in Rochestester, New York, USA
    K12-skypinhole21-2011A.jpg
  • A Thermogram of a young boy outside in winter. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-48.jpg
  • This picture is made from two pictures taken at different seasons.  The same scene can look quite different as the seasons change.
    K09seasonsellisonbridge123.jpg
  • This picture is made from two pictures taken at different seasons.  The same scene can look quite different as the seasons change.
    K09seasonsellisonhillpan2.jpg
  • This picture is made from two pictures taken at different seasons.  The same scene can look quite different as the seasons change.
    K09seasonsellisonbridgesouth123.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8520.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5795.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5649.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5450.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5287.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4648.jpg
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseD-ir-combo1.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseC-ir-combo.tif
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseA-ir-combo.tif
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8784.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8574.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8505.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9738PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5855.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4829.jpg
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseB-ir-combo.tif
  • A six month pinhole photo of the sun moving across the sky. The exposure started December 21, 2011 and ended on June 21, 2012.  The suns realative motion is recorded on one image.  Photographed in Rochester, New York, USA.
    K13-sun2-dec21-june21-2012.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8626.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8563.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8558.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-ice-8545.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6817.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6528.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6525.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6511.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6840.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6743.jpg
  • A four week pinhole photo of teh sun moving across the sky.
    K12-skynov7-2011medium.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9862PR-cropped.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5107.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4206.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    fantastic2003.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    bIMG_4779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2100300012_RT8PR.jpg
  • X-Ray of a Ski Helmet with goggles.
    x07-ski-helmet1neg.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    Snowflake05-1936.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K14-snowflake9024A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13Snow011A.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K13snow006A.jpg
  • A six month pinhole photo of the sun moving across the sky. The exposure started December 21, 2011 and ended on June 21, 2012.  The suns relative motion is recorded on one image.  The lines are the sun crossing the sky each day - while the breaks in the lines are where the clouds blocked the sun.  Photographed in Rochester, New York, USA.
    K13-6-21-2012Small.jpg
  • A cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8632.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6794.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6779.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11-snow6824B.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5804.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5429.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4967.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    coin_5128.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300089_RT8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    070214frost0006.jpg
  • An X-ray of an ice skate.
    x07iceskateablue.jpg
  • X-Ray of a speed skate.  Ice skate.
    x07-speed-skate1blue.jpg
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8607.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    k11-snowflake0058.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11snowflake6501.jpg
  • Snowflake with a platelet crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6507.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_9604PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    2130300134_rt8PR.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    snowKINSMAN5287.jpg
  • A Thermogram of a young boy, outside without a hat. The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..This image is part of a series.
    Ir07-47.jpg
  • The different colors represent different temperatures on the object. The lightest colors are the hottest temperatures, while the darker colors represent a cooler temperature.  Thermography uses special cameras that can detect light in the far-infrared range of the electromagnetic spectrum (900?14,000 nanometers or 0.9?14 µm) and creates an  image of the objects temperature..
    Ir07-43.jpg
  • This image is a combination of two images, one taken in visible light and one taken in infrared light. In the IR thermogram the temperature range goes from hot (white) to cold (blue). Thermography is a technique for visualizing the temperature of surfaces by recording the emission of long-wavelength infrared radiation. This heat radiation is detected electronically and displayed with different colors representing different temperatures.  In this image the whiter colors are the hottest.  The windows in homes are a major source of heat loss.
    K07houseD-ir-combo2.tif
  • A lengthwise cross section of an icicle that is three days old. In this case the icicle grows rings similar to a tree. The age of an icicle can be determined by the number of heating and cooling cycles the icicle has gone through. This cross section is 2 mm thick and is photographed in polarized light.
    K12-icicle-8584.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6846.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    K11Snowflake6819.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5329.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5221.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_5194.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4961.jpg
  • Snowflake with a stellar (or dendritic) crystal form, made in a cloud when water freezes at negative fifteen degrees Celsius. When crystallization occurs slowly, in calm air and in temperatures near the freezing point, snowflakes will exhibit hexagonal symmetry.
    IMG_4604.jpg
  • Little Brown Bat (Myotis lucifugus) captured in flight. These bats begin to fly just about sunset each night.  During the winter moths the little brown bat will fly to a cave to hibernate for the winter.  These bats also consume a huge amount of insects every night. Theses bats fly with their mouths open as they make the ultrasonic sounds used for feeding with their mouths.
    bat_5976.jpg
  • Little Brown Bat (Myotis lucifugus) captured in flight. These bats begin to fly just about sunset each night.  During the winter moths the little brown bat will fly to a cave to hibernate for the winter.  These bats also consume a huge amount of insects every night. Theses bats fly with their mouths open as they make the ultrasonic sounds used for feeding with their mouths.
    bat_6040.jpg
  • Little Brown Bat (Myotis lucifugus) captured in flight. These bats begin to fly just about sunset each night.  During the winter moths the little brown bat will fly to a cave to hibernate for the winter.  These bats also consume a huge amount of insects every night. Theses bats fly with their mouths open as they make the ultrasonic sounds used for feeding with their mouths.
    bat_7155.jpg
  • X-Ray of the  Chinese lantern plant, (Physalis alkekengi) also called the winter cherry or bladder cherry is a member of the potato family.  The chinese lantern plant is used mostly for decorative purposes, but is also harvested for its fruit. The fruit has twice the Vitamin C of lemons and resembles a blonde-red cherry tomato.
    K11Xlatern2C.jpg
  • X-Ray of the  Chinese lantern plant, (Physalis alkekengi) also called the winter cherry or bladder cherry is a member of the potato family.  The chinese lantern plant is used mostly for decorative purposes, but is also harvested for its fruit. The fruit has twice the Vitamin C of lemons and resembles a blonde-red cherry tomato.
    K11Xlatern2B.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae