Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 26 images found }

Loading ()...

  • X-Ray of a gigital music player (mp3).    This device will record and play music, has a radio built in, and will also act as a portible data device.
    x07-mp3player-iriverblue.jpg
  • X-Ray of an Apple Ipod shuffle music player.
    x07ipod-shuffle1.jpg
  • X-Ray of an Apple Ipod shuffle music player.
    x07ipod-shuffle1neg.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration079.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration062.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration072.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration075.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration074.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration076.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration067.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration065.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare03.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration078.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration071.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare002.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare001.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration064.jpg
  • Sand patterns formed from vibrating a square sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency. When the plat is driven at a resonate frequency the sand grains will collect in the nodes. Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate. The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate. This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 - 1827) also know for his work with the speed of sound.
    K10vibration068.jpg
  • Sand patterns formed from vibrating a quare sheet of thin metal. These formations, known as Chladni patterns, occur when fine particles, such as grains of sand or salt, form a unique pattern in response to pure tone vibrations such as musical notes. This sand was placed on a metal plate that was vibrated at different frequency.  When the plat is driven at a resonate frequency the sand grains will collect in the nodes.   Chladni Oscillations are a standing wave pattern visualized by vibrating a metal plate.  The nodes and anti-nodes of the oscillation are made visible my placing sand grains on the plate.   This technique for visualizing sound waves was discovered by Ernst Florens Friedrich Chladni (1756 – 1827) also know for his work with the speed of sound.
    K10vibrationsquare-set2.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-7.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-9.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-5.jpg
  • Vibrating strings on a base electric guitar. When plucked, the string vibrates at a specific frequency, which determines the pitch of the note. The vertical lines on the fretboard of the guitar mark where fingers should be placed to shorten or lengthen the vibrating part of the string. Shortening the string produces a note with a higher pitch, lengthening it lowers the note. The image was collected with a digital camera with a fast rolling shutter.
    K17strings-on-base-8.jpg
  • A drummer shows off his drum moves.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    drummer8431.jpg
  • This is an X-Ray of an antique Eight Track Tape. The x-ray shows the internal structures that allow the tape to circulate in a loop that contains eight songs or tacks. This technology was popular in the early 1970’s.
    K19tapeX-8track00007B.jpg
  • April Laragy, the lead singer of The Atomic Swindlers shows off her guitar moves.  A special stroboscopic camera records the motion.  The record of the motion can be analyzed to show both the timing and range of the motion.  This type of image is very important in the science of biomechanics.
    April8337.jpg
  • Facebook
  • Twitter
x

Ted Kinsman

  • Portfolio
  • Articles
  • Clients
  • About
  • Contact
  • Archive
    • All Galleries
    • Search
    • Cart
    • Lightbox
    • Client Area
  • Curriculum Vitae